МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи

Мельников Виталий Александрович

ИССЛЕДОВАНИЕ МАГНИТНЫХ СВОЙСТВ И ПРИПОВЕРХНОСТНОЙ МИКРОМАГНИТНОЙ СТРУКТУРЫ Fe- и Co-ОБОГАЩЕННЫХ АМОРФНЫХ ЛЕНТ И МИКРОПРОВОЛОК

Специальность 01.04.11 – физика магнитных явлений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва - 2009

Работа выполнена на кафедре магнетизма физического факультета Московского государственного университета им. М.В. Ломоносова

Научный руководитель:	доктор физико-математических наук, профессор, Е.Е. Шалыгина
Официальные оппоненты:	доктор физико-математических наук, профессор А.С. Андреенко доктор физико-математических наук, профессор Ю.Г. Рудой
Ведущая организация:	Институт металлургии и материаловедения им. А.А. Байкова РАН, г. Москва, Ленинский проспект, 49.

Защита состоится «____» июня 2009 года в _____ часов на заседании Диссертационного Совета Д 501.001.70 физического факультета Московского государственного университета им. М.В. Ломоносова по адресу: 119992, ГСП-2, Москва, Ленинские горы, д.1, стр.35, конференц-зал Центра коллективного пользования физического факультета МГУ им. М.В. Ломоносова.

С диссертацией можно ознакомиться в библиотеке физического факультета МГУ им. М.В. Ломоносова.

Автореферат разослан «____» мая 2009 года.

Ученый секретарь Диссертационного Совета Д 501.001.70, доктор физико-математических наук, профессор

Г.С. Плотников

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Несмотря на то, что аморфные магнитные материалы были открыты более сорока лет назад, интерес к исследованию их структурных, магнитных и кинетических свойств не ослабевает и по настоящее время. приповерхностной Исследование микромагнитной структуры (равновесного распределения намагниченности) и магнитных свойств Fe- и Со-обогащенных аморфных материалов, изготовленных в виде лент и микропроволок, заслуживает особого внимания как с точки зрения решения фундаментальных проблем физики магнитных явлений, так и прикладных задач. Наибольшее практическое применение Fe- и Со-обогащенные аморфные ленты и микропроволоки получили в качестве сенсорных элементов при изготовлении высокочувствительных датчиков магнитных полей, напряжений, низкого давления и деформаций. При этом область применения указанных материалов непрерывно расширяется.

Недавно новый класс нанокристаллических магнитных материалов был получен методом контролируемой кристаллизации расплавленного аморфного FeCuNbSiB прекурсора [1, 2]. Эти материалы вызвали большой интерес благодаря уникальным магнитным, механическим и кинетическим свойствам. Полученные в дальнейшем сплавы FeMB с M: Zr, Ta, Мо или Nb (NANOPERM) имели более простой состав И исключительные магнитомягкие свойства даже по сравнению с выше указанным сплавом [2, 3]. Объемные магнитные характеристики FeMB (и, в частности, FeNbB) соединений были изучены с помощью различных экспериментальных методов (см., например, [2]). Было обнаружено, что после отжига в температурной области 200-800 °С они ведут себя как материалы с двумя ферромагнитными (аморфной и нанокристаллической) фазами. Вместе с тем анализ существующих данных показал, что приповерхностные свойства микромагнитная магнитные И структура (равновесное распределение намагниченности) FeNbB материалов не изучалась.

Известно, что важную роль в формировании магнитных характеристик материалов поверхность. Таким магнитных играет ИХ образом, исследование приповерхностных магнитных свойств вышеуказанных сплавов с целью получения совершенных магнитомягких материалов, Вообще безусловно, представляет интерес. говоря, поиск новых, перспективных для различных практических приложений материалов, непрерывно продолжается. В связи с этим нами было также выполнено комплексное исследование приповерхностной микромагнитной структуры и магнитных характеристик аморфных Со- и Fe- обогащенных сплавов сложного состава, характеризующихся различающимися, но близкими к значениями магнитострикции, а также изучению нулю влияния термической обработки на указанные выше свойства.

Кроме того, в последнее время уделяется большое внимание изучению физических свойств нанокомпозитных микропроволок, состоящих из проводящей внутренней сердцевины и магнитомягкой внешней оболочки. Микронные размеры этих материалов обуславливают их широкое применение в миниатюризированных устройствах современной микроэлектроники. В частности, они применяются В качестве высокочувствительных датчиков магнитных полей, функциональные особенности которых основаны на использовании магнитополевой зависимости гигантского магнитоимпеданса (ГМИ), обнаруженного в аморфных, нанокристаллических и нанокомпозитных материалах. Известно [4], что амплитуда ГМИ в тонких магнитных пленках, аморфных и нанокристаллических лентах и проволоках сильно зависит от ИХ приповерхностной микромагнитной структуры. Анализ существующих показал, что приповерхностная микромагнитная данных структура композитных проволок практически не изучалась.

Наиболее эффективным и оперативным методом исследования приповерхностной микромагнитной структуры магнитных материалов является магнитооптический метод, основанный на использовании эффектов Керра. С помощью магнитооптических эффектов можно получить

информацию о магнитных характеристиках приповерхностного слоя, толщина которого определяется «глубиной проникновения света в среду», $t_{\rm np}$. Величина $t_{\rm np}$ определяется из соотношения: $t_{\rm np} = \lambda/4\pi k$, где λ – длина волны падающего света, а k – коэффициент поглощения среды. Магнитооптические методы могут быть также использованы при наблюдении приповерхностных доменных структур и их изменений под действием различных внешних воздействий, таких как магнитное поле, растягивающие и сжимающие напряжения, нагрев за счет проходящего через образец тока. Магнитооптический метод исследования магнитных материалов является одним из немногих методов, которые можно использовать в широкой области магнитных полей и температур.

<u>Цель работы</u> состояла в исследовании магнитных свойств и приповерхностной микромагнитной структуры Fe- и Co-обогащенных аморфных лент и нанокомпозитных NiFe/Cu и 81NMA/Nb микропроволок, а также в изучении влияния технологии получения и термической обработки указанных материалов на их магнитные свойства.

Научная новизна работы состоит

• в обнаружении в отожженных образцах FeNbB лент инвертированных петель гистерезиса.

• в обнаружении особенностей локальных магнитных свойств, процессов перемагничивания и приповерхностной микромагнитной структуры, Fe- и Co-обогащенных аморфных лент;

• в обнаружении особенностей локальных магнитных свойств, процессов перемагничивания и приповерхностной микромагнитной структуры нанокомпозитных NiFe/Cu и 81NMA/Nb микропроволок;

• в обнаружении сильного влияния отжига на магнитные свойства Fe- и Со-обогащенных аморфных лент и микропроволок;

• в установлении зависимости приповерхностных магнитных свойств NiFe/Cu проволок от толщины магнитной оболочки;

Практическая значимость: результаты работы позволяют дать научно обоснованные рекомендации получения аморфных лент и

микропроволок с магнитными свойствами, требуемыми для их дальнейшего практического применения.

Основные результаты диссертации, выносимые на защиту:

- 1. Впервые для гетерогенных (нанокристаллических/аморфных) FeNbB сплавов обнаружены полностью и частично инвертированные приповерхностные петли гистерезиса.
- 2. Установлены особенности приповерхностной микромагнитной структуры и магнитных свойств Fe- и Co-обогащенных аморфных лент, а также нанокомпозитных NiFe/Cu и 81NMA/Nb микропроволок.
- Доказано существование в нанокомпозитной NiFe/Cu микропроволоке приповерхностных круговых доменов примерно с ±80-градусной ориентацией намагниченности в соседних доменах относительно длины образца.
- Найдено, что значение поля насыщения H_S увеличивается, а ширина кругового домена d уменьшается с ростом концентрации железа C_{Fe} в слое нанокомпозитных NiFe/Cu микропроволок.
- Обнаружена зависимость приповерхностных значений поля насыщения H_S от толщины пермалоевой оболочки композитных NiFe/Cu проволок.
- 6. Обнаружено сильное влияние отжига на магнитные свойства изучаемых Fe- и Co-обогащенных аморфных лент и микропроволок.

<u>Достоверность</u> полученных результатов обеспечена использованием тестированных образцов, проведением многократных измерений кривых намагничивания и петель гистерезиса при определении магнитных характеристик исследуемых материалов, контролем в процессе эксперимента шумов и наводок, углубленным рассмотрением физических явлений и процессов, определяющих магнитные свойства изучаемых образцов, и сравнением полученных результатов с известными в литературе экспериментальными и теоретическими исследованиями.

<u>Личный вклад</u> диссертанта состоит в модернизации магнитооптической установки, в проведении исследований магнитных свойств изучаемых материалов, в проведении анализа полученных экспериментальных результатов.

<u>Апробация работы</u>. Основные результаты работы докладывались и обсуждались на международных и всероссийских конференциях:

- НМММ-2004, Международной конференции по новым магнитным материалам микроэлектроники, Москва, 2004;
- Joint European Magnetic Symposia, Dresden, Germany, 2004;
- MISM-2005, Московском международном симпозиуме по магнетизму, Москва, 2005;
- ICMAT-2005, 3^{ей} международной конференции по материалам для прикладных технологий, Сингапур, 2005;
- НМММ-2007, Международной конференции по новым магнитным материалам микроэлектроники, Москва, 2007;
- Международной конференции по магнетизму малых частиц, Рим, 2007;
- 18^{ой} конференции по магнитомягким материалам (Кардиф, Великобритания, 2007;
- MISM-2008, Московском международном симпозиуме по магнетизму, Москва, 2008;
- 9^{ой} международной конференции по некристаллическим твердым материалам, Порто, Португалия, 2008.

Публикации.

Основное содержание диссертации изложено в 15 печатных работах, список которых приведен в конце автореферата.

Структура и объем диссертации.

Диссертация состоит из введения, трех глав, заключения и списка литературы. Общий объем работы составляет 134 страницы машинописного текста, включая 61 рисунок, 3 таблицы и список цитируемой литературы из 151 наименования.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации; сформулированы цель, новизна, научная и практическая значимость работы; основные положения, выносимые на защиту; кратко изложено содержание диссертации по главам.

Первая глава диссертационной работы носит обзорный характер. В ней представлены основные сведения о структурных и магнитных свойствах аморфных магнитных материалов, в частности, аморфных лент и Перечислены микропроволок. основные методы ИХ получения И исследования. Приведены существующие представления о процессах перемагничивания и доменной структуре аморфных лент и микропроволок, описано влияние термических и термомагнитных обработок, а также растягивающих напряжений на их магнитные свойства. Представлены данные о влиянии микромагнитной структуры на ГМИ в аморфных материалах.

Во второй главе дано описание экспериментальных методик и установок, используемых в работе для изучения приповерхностной микромагнитной структуры и локальных магнитных свойств аморфных лент и проволок, приведены характеристики изучаемых образцов, проанализированы ошибки эксперимента. Исследования приповерхностных магнитных характеристик изучаемых лент и микропроволок были выполнены магнитооптической установке, собранной на базе на микроскопа МИС-11 с помощью экваториально эффекта Керра (ЭЭК). Локальные кривые намагничивания и распределения намагниченности измерялись при сканировании светового пятна диаметром 20 мкм по поверхности изучаемых образцов. Магнитооптические измерения были выполнены для обеих (контактной и свободной) сторон изучаемых лент. Анизотропия магнитных свойств была изучена путем вращения образца нормали к его поверхности. Угол между вокруг направлением, совпадающим с длиной ленты в процессе ее изготовления, и ориентацией внешнего магнитного поля H обозначен через ϕ .

Объемные магнитные характеристики были измерены на вибрационном магнетометре. Микроструктура образцов была изучена с помощью рентгеновского дифрактометра.

В работе были исследованы следующие исходные и отожженные аморфные материалы:

1. Fe_{80.5}Nb_{7.5}B₁₂ аморфные ленты.

- 2. Fe- и Со-обогащенные аморфные ленты.
- 3. Нанокомпозитные NiFe/Cu и 81NMA/Nb проволоки.

<u>В третьей главе</u> приведены результаты исследования микромагнитной структуры и локальных магнитных свойств аморфных лент и проволок, приведено их обсуждение.

В разделе 3.1 приведены результаты исследования магнитных свойств и приповерхностной микромагнитной структуры исходных и отожженных в атмосфере аргона в течение одного часа при температурах 400, 450, 500, 550, 600 и 650 °C Fe_{80.5}Nb_{7.5}B₁₂ аморфных лент. Измерения объемных магнитных характеристик FeNbB лент свидетельствовали о том, что образцы характеризуются слабой плоскостной магнитной анизотропией (рис. 1). Было обнаружено, что объемные значения коэрцитивной силы $H_{\rm C}^{\rm vol}$ и поля насыщения $H_{\rm S}^{\rm vol}$ с ростом температуры отжига до 550 °C уменьшаются, но с дальнейшим ростом температуры $H_{\rm C}^{\rm vol}$ порядка 12 Э.

Полученные экспериментальные данные можно объяснить, принимая во внимание результаты микроструктурных исследований образцов. Анализ рентгеновских дифракционных спектров показал, что в исходном состоянии FeNbB образцы являются аморфными, а после отжига характеризуются наличием аморфной и нанокристаллической фаз, причем объем нанокристаллической фазы увеличивается от 40 до 89 % с ростом T_{ann} от 450 до 650 °C. В соответствии с моделью случайной магнитной анизотропии, обобщенной для случая двухфазных систем, увеличение объемной фракции bcc-Fe кристаллитов в отожженных образцах при $T_{ann} < 550$ °C приводит к

более эффективному межгранулярному взаимодействию, что сопровождается уменьшением $H_{\rm C}$ и $H_{\rm S}$ [5]. Кроме того, в отожженных при $T_{\rm ann} = 450, 550$ и 650 °C образцах размер bcc-Fe кристаллитов, *l*, был порядка 16-18, 10-12 и 20-24 нм, соответственно. Известно [5], что при *l* ~ 10-12 нм сплавы обычно характеризуется минимальными значениями $H_{\rm C}^{\rm vol}$ и $H_{\rm S}^{\rm vol}$, что и наблюдалось нами. Увеличение значений $H_{\rm C}^{\rm vol}$ и $H_{\rm S}^{\rm vol}$ в лентах, отожженных при T_{ann} > 550 °C, можно объяснить практически полной кристаллизацией образца. В этом случае на процессы перемагничивания образца влияние сильное оказывают границы раздела между кристаллитами, которые являются центрами закрепления доменных границ.

Рис. 1. Объемные петли гистерезиса, наблюдаемые для исходного и отожженного при 650 °C образцов в магнитном поле, ориентированном под углом $\phi = 0 \, u \, 90^{\circ}$.

Изучение приповерхностных магнитных свойств исходных И отожженных FeNbB образцов показало, что они существенно отличаются от объемных характеристик. Анализ экспериментальных данных показал, что форма петель гистерезиса, измеренных В магнитном поле, ориентированном под углом $\phi = 0$ и 90°, различается, что свидетельствует о наличии приповерхностной магнитной анизотропии в изучаемых 2). Было найдено, что приповерхностные значения образцах (рис. коэрцитивной силы H_{C}^{SUR} значительно больше, чем объемные. Этот факт объяснен наличием микроструктурных и химических может быть неоднородностей в приповерхностных слоях образцов, что является характерным для материалов, приготовленных методом закалки расплава на быстровращающемся барабане.

Рис. 2. Приповерхностные петли гистерезиса, наблюдаемые на свободной стороне отожженного при 500 °С образца в магнитном поле, ориентированном под углом $\phi = 0$ и 90°. На вставке прямая ветвь петли гистерезиса.

Было обнаружено также, что значения $H_{\rm C}^{\rm SUR}$ и $H_{\rm S}^{\rm SUR}$, измеренные на свободной и контактной сторонах изучаемых лент, различаются. Наличие различающихся остаточных напряжений, существующих на контактной и свободной сторонах ленты в процессе ее изготовления и термической обработки, являются причинами выше описанного факта. Сильное влияние на обнаруженные особенности коэрцитивной силы может оказывать также различная морфология сторон.

Наибольшего внимания заслуживает следующий экспериментальный результат. Было установлено, что в отожженных образцах при некоторых ориентациях магнитного поля прямая и обратная ветви приповерхностных петель гистерезиса меняются местами, то есть, наблюдается отрицательная остаточная намагниченность при уменьшении положительного магнитного поля до нуля (и наоборот) (см. также рис. 2). Согласно существующим представлениям [6], такие петли называются инвертированными. Чтобы понять этот экспериментальный результат, были измерены приповерхностные петли гистерезиса для различных значений ϕ . Было найдено, что форма приповерхностных петель гистерезиса сильно зависит от ориентации магнитного поля в плоскости образца. При этом существует необычное поведение остаточной намагниченности как функции угла ϕ (рис. 3).

Рис. 3. Зависимости приведенной остаточной намагниченности M_R/M_S (M_S – намагниченность насыщения) от угла ϕ , полученные для свободной стороны отожженных при 450 и 500 °C образцов.

Из рисунка 3. можно видеть, что существует интервал углов ϕ , где значения *M*_R/*M*_S являются отрицательными. Именно в этой области углов ϕ наблюдаются частично или полностью инвертированные приповерхностные петли гистерезиса. Согласно существующим представлениям, отрицательное значение остаточной намагниченности при выключении положительного магнитного поля является запрещенным в однородных магнитных системах, В которых при описании ИХ

термодинамического состояния намагниченность является параметром порядка. В теоретической работе [6] было показано, что инвертированные петли гистерезиса могут наблюдаться только для гетерогенных магнитных систем. В нашем случае отожженные образцы характеризуются наличием аморфной И нанокристаллической фаз, то есть также являются гетерогенными. Учитывая этот факт, полученные экспериментальные данные были качественно объяснены в рамках двухфазной модели с двумя неидентичными фазами, характеризующимися одноосной магнитной анизотропией и антиферромагнитным обменным взаимодействием между ними. В заключение следует отметить, что двухфазность отожженных FeNbB образцов проявляется только на магнитно-полевом поведении их приповерхностных слоев, где обычно и происходят после отжига наиболее Объемные микроструктурные изменения. же магнитные сильные характеристики образцов В соответствии С изменяются их микроструктурными особенностями, без каких-либо HO заметных изменений формы петли гистерезиса.

Сильное влияние отжига было обнаружено и на локальные приповерхностные магнитные характеристики изучаемых Fe_{80.5}Nb_{7.5}B₁₂ образцов. Было найдено, что для исходного образца локальные кривые намагничивания различаются, а распределения намагниченности имеют нерегулярный характер. Такое поведение локальных приповерхностных магнитных свойств характерно для исходных аморфных материалов, что обусловлено сильной дисперсией магнитной анизотропии, которая, как правило, наблюдается в материалах, полученных методом закалки расплава на быстро вращающемся барабане. С увеличением температуры отжига различие приповерхностных локальных намагничивания кривых уменьшается, а для отожженного при $T_{ann} = 650$ °C образца оно практически исчезает. Кроме того, при $\phi = 90^{\circ}$ в отожженных лентах наблюдаются периодические распределения намагниченности, что означает наличие в этих образцах периодической доменной структуры (рис. 4). Значение

периода *d* можно оценить по расстоянию между максимальными (или $M^{\rm SUR}/M_{\rm S}$ минимальными) значениями на кривых распределения намагниченности. Было найдено, что с ростом температуры отжига вплоть до 550 °C значение *d* увеличивается. В частности, для отожженных при 400 550 °C образцов *d* приблизительно равно 500 и И 750 микрон, соответственно. Обнаруженные температурные изменения *d* можно объяснить, если принять во внимание наблюдаемую для изучаемых образцов температурную зависимость поля насыщения. Обнаружено, что значения поля насыщения с ростом температуры отжига до 550 °С уменьшаются, а при T > 550 °C значения $H_{\rm S}$ увеличиваются. Объяснение температурной зависимости *H*_S было дано выше при обсуждении объемных магнитных характеристик изучаемого сплава.

Рис. 4. Типичные распределения намагниченности, наблюдаемые в магнитном поле, ориентированном под углом $\phi = 90^{\circ}$, при сканировании светового пятна диаметром 20 микрон по свободной стороне отожженных при 450 (а) и 550 °C (в) образцов.

Учитывая следующие известные соотношения (см. монографию Г.С. Кринчика «Физика магнитных явлений»):

$$d \propto K^{-1/4}$$
 и $H_{
m S} \propto K/M_{
m S}$

увеличение *d* можно объяснить уменьшением константы анизотропии *K* отожженных образцов.

В разделе 3.2 приведены результаты магнитооптического исследования микромагнитной структуры и магнитных характеристик аморфных лент. состав, значения индукции насыщения, $B_{\rm S}$, И магнитострикции, λ_s, которых приведены в таблице. Особенностью этих образцов является заметное различие значений λ_S.

Nº	Состав	<i>B</i> _s ,T	$\lambda_{s}, 10^{-6}$
1	Fe ₅₆ Co ₇ Ni ₇ Zr _{7.5} Nb _{2.5} B ₂₀	1,2	7
2	$Fe_{52}Co_{10}Nb_8B_{30}$	1,1	7,4
3	$Co_{63}Fe_7Zr_{10}B_{20}$	0,6	2,5
4	$\mathrm{Co}_{62}\mathrm{Fe}_{10}\mathrm{Zr}_{8}\mathrm{B}_{20}$	0,65	4
5	$Co_{60}Fe_{10}Zr_{10}B_{20}$	0,6	5
6	$Co_{50}Fe_{20}Zr_{10}B_{20}$	0,68	7

T	~	
- 1 9	опина	
- 1 (олица	•

Кривые намагничивания и петли гистерезиса были измерены при двух ориентациях внешнего магнитного поля Н. В одном случае Н было параллельно длине ленты L, а в другом – перпендикулярно L (обозначено как W). Анализ полученных экспериментальных данных показал следующее. Для всех образцов кривые намагничивания, измеренные в магнитных полях, приложенных вдоль направлений L и W, различаются, что свидетельствует о наличии магнитной анизотропии в изучаемых лентах. Легкая ось намагничивания совпадает с направлением L, что характерно для аморфных материалов с положительным значением λ_S . Значение полей насыщения $H_{\rm S} \propto K_{
m s \phi \phi}$ в исследуемых лентах увеличивается с ростом $\lambda_{\rm S}$, что обусловлено увеличением эффективной константы магнитной анизотропии, имеющей в данном случае преимущественно магнитоупругое K_{abb} , происхождение: $K_{abb} \propto \lambda_S \sigma$, где σ – напряжения, существующие в процессе изготовления лент. В Fe-обогащенных образцах (№1 и 2), несмотря на сильное различие состава, значение $\lambda_{\rm S}$ практически одинаковое, и различие полей насыщения H_S для образцов № 1 и 2 порядка 10 %. Причем H_S больше для образца №2, для которого величина λ_{s} больше. Значения полей насыщения на свободных сторонах лент меньше, чем на контактных, что обусловлено различающимися остаточными напряжениями σ, возникающими вблизи контактной и сводной сторон лент в процессе их изготовления методом закалки расплава на быстровращающемся барабане, а также различающейся морфологией этих сторон.

Было найдено, что локальные кривые намагничивания для всех исходных образцов различаются, что свидетельствует о наличии в них магнитных неоднородностей (рис. 5). Размер приповерхностных магнитных неоднородностей был также оценен из распределений намагниченности. Было обнаружено, что на свободных сторонах Fe- обогащенных лент размер магнитных неоднородностей *d* порядка 300-500 микрон. В случае Со-обогащенных лент размер *d* больше для образца N_{24} , который характеризуется меньшим значением λ_{S} , и соответственно меньшим значением эффективной константы магнитной анизотропии K_{300} .

Рис. 5. Типичные приповерхностные локальные кривые намагничивания, наблюдаемые для свободной и контактной сторон Со-обогащенных образцов № 4 и 5 в магнитном поле, приложенном вдоль направления L: (а) и (в), соответственно.

Термическая обработка может существенно влиять на магнитные характеристики изучаемых материалов. Образцы № 3, 4 и 6, проявившие наиболее магнитомягкие свойства были от<u>о</u>жжены в вакууме при температурах T = 400, 550 и 650 °C. Измерения приповерхностных кривых

намагничивания позволили получить температурную зависимость поля насыщения, наблюдаемую для контактных и свободных сторон изучаемых образцов (рис. 6).

Рис. 6. Зависимости поля насыщения от температуры отжига, наблюдаемые для свободных и контактных сторон Со-обогащенных образцов № 3 и 4 при намагничивании их вдоль направления L.

Анализ полученных данных показал следующее. После отжига образцов №3 и 4 при T = 400, 550 и 650 °C однородность их локальных магнитных свойств повышается. При этом температурный режим поразному влияет на величину поля насыщения $H_{\rm S}$. В частности, после отжига образцов № 3 и 4 при T = 400 °C значения $H_{\rm S}$ на свободных сторонах лент в поле, параллельном направлению L, соответственно равны 7 и 6 Э, что примерно в полтора и два раза меньше, чем $H_{\rm S}$ исходных образцов. Вместе с тем, отжиг этих образцов при T = 550 и 650 °C сопровождается резким увеличением $H_{\rm S}$. Как видно из приведенных выше данных, в этом случае $H_{\rm S} > 100$ Э. Другое поведение магнитных свойств был обнаружено для образца № 6. Оказалось, что поле насыщения образца, отожженного даже при T = 400 °C, увеличивается примерно в четыре раза (65 Э вместо 19 Э). Отжиг при T = 550 и 650 °C приводит к дальнейшему (почти на порядок) росту значений поля насыщения $H_{\rm S}$. Полученные данные можно объяснить микроструктурными особенностями изучаемых лент. Рентгеноструктурные

исследования образцов показали, что их микроструктура с ростом температуры отжига существенно изменяется. Было найдено, что для лент № 3 и 4 температура *T* ~ 430 °C соответствует начальной стадии изотермической кристаллизации образцов. Вследствие этого исходные и отожженные при T = 400 °C образцы остаются аморфными. Улучшение магнитных свойств отожженных при T = 400 °C образцов по сравнению с объяснить изменением наведенной эффективной исходным можно константы магнитной анизотропии, величина которой зависит от λ_s и остаточных напряжений σ, возникающих в процессе приготовления ленты методом закалки из расплава. Известно [7], что термическая обработка аморфных лент приводит к уменьшению остаточного напряжения σ. В результате величина эффективной константы наведенной магнитной анизотропии ($K_{abb} \propto \lambda_s \sigma$) уменьшается, что приводит к уменьшению поля насыщения *H*_S (*H*_S ∝ *K*_{эфф}). Дальнейшее увеличение температуры отжига сопровождается началом процессов кристаллизации, что приводит к увеличению значений поля насыщения *H*_S.

Результаты измерений распределений намагниченности для отожженных образцов № 3, 4 и 6 подтверждали изложенные выше данные. Размер магнитных неоднородностей в лентах № 3 и 4, отожженных при T =400 °С, увеличивался, что в соответствии с выше изложенными данными, обусловлено уменьшением поля насыщения и соответственно уменьшением $K_{3\phi\phi}$. Отжиг образцов №3 и 4 при T = 650 °C сопровождался завершением как следствие этого, кристаллизации и, процессов повышением однородности магнитных характеристик.

В целом результаты проведенных исследований показали, что благодаря термической обработке аморфных лент возможен переход из магнитомягкого состояния в магнитожесткое без изменения их состава.

В разделе 3.3 приведены результаты исследования приповерхностной микромагнитной структуры и локальных магнитных свойств NiFe/Cu и 81NMA/Nb микропроволок. Локальные кривые намагничивания и распределения компонент намагниченности (как параллельной, M_{\parallel} , так и

перпендикулярной, M_{\perp} , приложенному магнитному полю) были измерены с помощью экваториального эффекта Керра путем сканирования светового пятна диаметром 1 микрон вдоль длины образца L, равной 15 мм. Измерения распределений намагниченности были выполнены в центральной части изучаемых микропроволок, чтобы исключить влияние краевых эффектов, в частности, вариаций локального размагничивающего фактора.

Было найдено, что для первой серии NiFe/Cu микропроволок, полученных путем электролитического осаждения, при $H < H_S$ (H_S – поле насыщения) наблюдается линейная зависимость намагниченности от величины приложенного поля (рис. 7).

Рис. 7. Локальные приповерхностные кривые намагничивания, наблюдаемые для центральных (1) и краевых (2) микроучастков композитных NiFe/Cu проволок с содержанием железа C_{Fe} в слое NiFe, равном 20.5 и 23.3 %: (а) и (b), соответственно.

Согласно существующим представлениям [8] этот экспериментальный факт свидетельствует о том, что основным механизмом перемагничивания микропроволок является вращение локальных векторов намагниченности. Из рисунка 7 видно, что кривые намагничивания центральных и краевых образцов микроучастков различаются, обусловлено что влиянием размагничивающего локального фактора на поведение различных микроучастков проволоки в магнитном поле. Кроме того, было найдено, что значения $H_{\rm S}$ зависят от содержания железа, $C_{\rm Fe}$, в слое NiFe (рис. 8).

Рис. 8. Зависимость локальных значений поля насыщения от содержания железа в слое NiFe, наблюдаемая для центральных микроучастков композитных NiFe/Cu проволок. На вставке приведена зависимость намагниченности насыщения сплава NiFe от процентного содержания железа C_{Fe} .

В частности, значительное увеличение $H_{\rm S}$ наблюдается при $C_{\rm Fe} = 26.8\%$. [9], что увеличением С_{Fe} от 19 до 27% значение Известно с намагниченности насыщения $M_{\rm S}$ в NiFe сплавах линейно возрастает от 845 до 976 Гс (см. вставку на рис. 8). Таким образом, поле насыщения, рассчитанное из соотношения $H_{\rm S} \propto K/M_{\rm S}$ (K – константа магнитной анизотропии) должно уменьшаться с увеличением C_{Fe}, то есть описанный выше экспериментальный факт не может быть объяснен изменением значения $M_{\rm S}$ с ростом $C_{\rm Fe}$ Найденная экспериментально зависимость $H_{\rm S}(C_{\rm Fe})$ может быть объяснена микроструктурными особенностями образцов. Данные, полученные с помощью рентгеновского дифрактометра и трансмиссионного электронного микроскопа, свидетельствовали о том, что NiFe слои изучаемых композитных проволок имеют нанокристаллическую структуру с размером гранул D порядка 12-18 нм, причем значение D увеличивается с ростом C_{Fe}. Найденные значения D значительно меньше ллины ферромагнитного взаимодействия, которая для пермаллоя приблизительно равна 270 нм. Следовательно, в данном случае применима модель случайной магнитной анизотропии [5]. В соответствии с этой моделью $K_{3\phi\phi}$ и, соответственно, $H_{\rm S}$ нанокристаллического материала увеличиваются с ростом D, что и наблюдалось нами.

Наибольшего внимания заслуживают результаты измерений распределений намагниченности вдоль длины образцов *L*. (рис. 9).

Рис. 9. Типичные распределения $M_{\parallel}(L)/M_S$ и $M_{\perp}(L)/M_S$, наблюдаемые для микропроволок с $C_{Fe} = 26.8$ и 19.3 %: (а) и (b), соответственно.

Из рисунка 9 видно, что компонента намагниченности M_{\parallel} имеет один же знак. a зависимость $M_{\perp}(L)$ имеет осциллирующий И тот знакопеременный характер. Анализ формы магнитооптических сигналов с учетом различных механизмов перемагничивания образца показал, что знакопеременное поведение зависимости $M_{\perp}(L)$ возможно только в том случае, когда локальный вектор намагниченности M_S на различных микроучастках образца направлен под углом $\pm \theta$ относительно его длины L, а перемагничивание этих микроучастков осуществляется за счет вращения локальных векторов M_S. Таким образом, полученные нами данные свидетельствуют о том, что в приповерхностной области микропроволок существуют круговые домены, и намагниченность в соседних доменах направлена под углом $\pm \theta$ относительно *L*. Дополнительные исследования показали, что абсолютное значение θ порядка 80°. Было также найдено, что значение θ увеличивается с ростом C_{Fe} , то есть с увеличением эффективной константы магнитной анизотропии. Очевидно, что расстояние между нулевыми знакопеременных кривых 9 значениями на рисунка соответствуют ширине, d, круговых доменов. Из полученных зависимостей $M_{\perp}(L)/M_{\rm S}$ найдено, что значение d уменьшается с увеличением $C_{\rm Fe}$. В

частности, для проволок с $C_{\text{Fe}} = 19.3$ и 26.8 %, значение *d* равно 10 и 8 микрон, соответственно. Здесь также, принимая во внимание соотношение $d \propto K^{-1/4}$, уменьшение *d* можно объяснить обратно-пропорциональной зависимостью *d* от эффективной константы магнитной анизотропии, которая, как показано выше, увеличивается с ростом C_{Fe} .

Далее приведены результаты магнитооптического исследования второй серии микропроволок, полученных прессованием стержней, состоящих из немагнитной (Cu, Nb) сердцевины, помещенной в магнитную (NiFe, 81NMA) трубку. Было найдено, что, как и в предыдущем случае, значения H_S для краевых микроучастков микропроволок примерно в 2-4 раза больше, чем центральных. Рост локальных размагничивающих участков краевых сравнению факторов ДЛЯ ПО с центральными обуславливает это различие. Для этой серии композитных микропроволок были также измерены распределения намагниченности вдоль их длины L. Было найдено. ЧТО И в этом случае при $H < H_{\rm S}$ локальные приповерхностные намагниченности, компоненты параллельные приложенному магнитному полю, M_{\parallel} имеют один знак. a перпендикулярные к полю, M_{\perp} , имеют знакопеременное, осцилляционное поведение (рис. 10).

Рис. 10. Типичные распределения намагниченности параллельной $M_{||}$ и перпендикулярной M_{\perp} приложенному магнитному полю, наблюдаемые для NiFe/Cu микропроволок.

Наблюдаемые распределения намагниченности свидетельствовали о том, что в приповерхностной области NiFe/Cu и 81NMA/Nb микропроволок также существуют круговые домены.

Куски NiFe/Cu микропроволок были отожжены при температуре T = 780 °C в течение 2 часов, а 81NMA/Nb микропроволок – при температуре T = 750 °C в течение 1 и 3 часов при давлении $P = 10^{-5}$ Торр. Было найдено, что термическая обработка сопровождается существенным изменением приповерхностных значений поля насыщения. В частности, $H_{\rm S}$ в отожженных проволоках увеличивается в 1.5-2 раза по сравнению с исходными образцами.

<u>В заключении</u> сформулированы основные результаты и выводы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

- 1. Установлено, что Fe_{80.5}Nb_{7.5}B₁₂ аморфные ленты имеют практически изотропные объемные магнитные характеристики, в то время как их приповерхностные магнитные свойства являются анизотропными.
- 2. Обнаружено, что термическая обработка $Fe_{80.5}Nb_{7.5}B_{12}$ лент существенно влияет на их магнитные характеристики. Установлено, что с ростом температуры отжига до 550 °C значения поля насыщения H_S уменьшаются, а при $T_{ann} > 550$ °C они увеличиваются. Найденные температурные зависимости поля насыщения образцов были объяснены их микроструктурными изменениями с ростом температуры отжига. В частности, появление в отожженных при температуре $T_{ann} \le 550$ °C образцах нанокристаллической фракции, объем которой увеличивается с ростом T_{ann} , обуславливает уменьшение H_S , а полная кристаллизация образца при $T_{ann} > 600$ °C приводит к существенному увеличению H_S . Наилучшие магнитомягкие свойства были обнаружены для образца, отожженного при температуре 550 °C.

- 3. Впервые обнаружено, что в отожженных Fe_{80.5}Nb_{7.5}B₁₂ образцах прямая и обратная ветви приповерхностных петель гистерезиса меняются местами, то есть наблюдаются инвертированные петли гистерезиса. Полученные экспериментальные данные были качественно объяснены в рамках двухфазной модели с двумя неидентичными фазами, характеризующимися одноосной магнитной анизотропией и антиферромагнитным обменным взаимодействием между ними.
- 4. Установлено, что изучаемые Fe- и Со-обогащенные аморфные ленты с различающимися положительными значениями магнитострикции $\lambda_{\rm S}$ характеризуются наличием плоскостной магнитной анизотропии с ориентацией оси легкого намагничивания параллельно длине ленты, причем экспериментально найденные значения полей насыщения $H_{\rm S} \propto K_{\rm эф\phi}$ образцов зависят от величины $\lambda_{\rm S}$. Причиной этого является магнитоупругое происхождение магнитной анизотропии в аморфных материалах, эффективная константа которой определяется соотношением $K_{\rm эф\phi} \propto \lambda_{\rm S}\sigma$, где $\lambda_{\rm S}$ магнитострикция, а σ напряжения, существующие в процессе изготовления лент
- 5. Обнаружено, что в исходных образцах Fe- и Со-обогащенных аморфных лент локальные приповерхностные кривые намагничивания различаются, а распределения намагниченности имеют нерегулярный характер, что было объяснено дисперсией приповерхностной магнитной анизотропии, которая обычно наблюдается в материалах, полученных методом закалки расплава на быстровращающемся барабане.
- 6. Найдено, что значения полей насыщения и коэрцитивной силы на свободных сторонах изучаемых лент меньше, чем на контактных. Этот факт был объяснен различающимися остаточными напряжениями, возникающими вблизи контактной и сводной сторон лент в процессе их изготовления, а также различающейся морфологией этих сторон.
- Установлено, что термическая обработка изучаемых аморфных лент существенно влияет на их магнитные характеристики. В частности, термическая обработка повышает однородность приповерхностных

магнитных свойств, при этом значения полей насыщения зависят от температуры отжига. В целом было установлено, что в результате термической обработки аморфных сплавов возможен переход из магнитомягкого состояния в магнитожесткое без изменения их состава. Очевидно, что этот экспериментальный факт может быть использован при применении указанных сплавов в практических приложениях.

- 8. Обнаружено, что в приповерхностной области нанокомпозитных NiFe/Cu микропроволок, полученных путем электролитического осаждения NiFe на медные проволоки, существуют круговые домены с ±80-градусной ориентацией намагниченности в соседних доменах относительно длины образца. При этом основным механизмом перемагничивания выше указанных микропроволок является вращение локальных векторов намагниченности.
- 9. Найдено, что значение поля насыщения $H_{\rm S}$ увеличивается, а ширина круговых доменов d уменьшается с ростом концентрации железа, $C_{\rm Fe}$, в магнитном NiFe слое нанокомпозитных микропроволок. Найденные зависимости $H_{\rm S}(C_{\rm Fe})$ и $d(C_{\rm Fe})$ объяснены микроструктурными изменениями микропроволок с изменением $C_{\rm Fe}$.
- 10. Обнаружено, что с ростом толщины магнитной оболочки в нанокомпозитных NiFe/Cu и 81NMA/Nb проволоках, приготовленных прессованием стержней, состоящих из Cu (Nb) сердцевины, помещенной в NiFe (81NMA) трубку, приповерхностные значения H_s увеличиваются.
- 11. Установлено, что при $H < H_{\rm S}$ локальные приповерхностные компоненты намагниченности в нанокомпозитных NiFe/Cu и 81NMA/Nb проволоках, параллельные приложенному магнитному полю, M_{\parallel} , имеют один знак, а перпендикулярные к H (как M_{\perp} , так и $M_{\rm n}$), имеют знакопеременное, осцилляционное поведение.
- Обнаружено, что термическая обработка нанокомпозитных NiFe/Cu и 81NMA/Nb проволок сопровождается существенным изменением приповерхностных значений поля насыщения H_s.

Основные результаты диссертации опубликованы в работах:

- Е.Е. Шалыгина, И. Скорванек, П. Свек, В.В. Молоканов, В.А. Мельников // Инвертированные приповерхностные петли гистерезиса в гетерогенных (нанокристаллических/аморфных) Fe₈₁Nb₇B₁₂ сплавах// Письма в ЖТФ, 30, в. 14 (2004) с. 37-41.
- Е.Е. Шалыгина, И. Скорванек, П. Свек, В.А. Мельников, Н.М. Абросимова // Инвертированные приповерхностные петли гистерезиса в гетерогенных (нанокристаллических/аморфных) Fe₈₁Nb₇B₁₂ сплавах // ЖЭТФ, 126, N3 (2004) 625-633.
- Е.Е. Шалыгина, В.В. Молоканов, В.А. Мельников, Н.М. Абросимова // Особенности магнитных свойств гетерогенных (нанокристаллических/аморфных) Fe_{80.5}Nb_{7.5}B₁₂ сплавов // Труды докладов конференции «Новые магнитные материалы микроэлектроники-XIX», Москва, 2004, с. 877-879.
- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, N.M. Abrosimova // Inverted Near-surface Hysteresis Loops in Annealed Fe_{80.5}Nb₇B_{12.5} Ribbons // J. Magn. Magn. Mater. 290-291 (2005) Part 2, 1438-1441.
- E.E. Shalyguina, V/V/ Molokanov, M.A. Komarova, V.A. Melnikov, A.N. Shalygin // Abnormal near-surface of heterogeneous (amorphous/nanocrystalline) FeNbB ribbons // Thin Solid Films, 5, Issues1-2 (2006) 161-164.
- E.E. Shalygina, G.V. Maximova, M.A. Komarova, V.A. Melnikov, A.N. Shalygin, V.V. Molokanov // Magnetic field behavior of heterogeneous magnetic materials // J. Magn. Magn. Mater. 321 (2009) 865-867.
- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, N.M. Abrosimova // Inverted near-surface hysteresis loops in annealed Fe_{80.5}Nb₇B_{12.5} ribbons // Book of Abstracts of the Joint European Magnetic Symposia, (Dresden, Germany), September 05-10, 2004, p.115.
- 8. E.E. Shalyguina, V.V. Molokanov, A.M. Saletskii, M.A. Komarova, V.A. Melnikov // Inverted Near-surface Hysteresis Loops in Heterogeneous

(Amorphous/Nanocrystalline) Fe_{80.5}Nb₇B_{12.5} Ribbons // Book of Abstracts of The European Magnetic Sensors and Actuators Conference (EMSA), TP-12, Cardiff, United Kingdom, 4- 7 July, 2004.

- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, A.N. Shalygin// Abnormal near-surface magnetic properties of heterogeneous (amorphous/nanocrystalline) Fe_{80.5}Nb₇B_{12.5} ribbons // 3rd International conference on Materials for Advanced Technologies, ICMAT-2005, 3-8 July, Singapore, Abstracts of Symposium D. Magnetic Nanomaterials and Devices, p. 12.
- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, A.M. Abrosimova // Peculiarities of magnetic properties of annealed Fe_{80.5}Nb₇B_{12.5} ribbons // Book of abstracts of Moscow International Symposium on Magnetism, MISM2005, June, Moscow, Russia, p. 263.
- 11. Е.Е. Шалыгина, А.Ф. Прокошин, А.Н. Шалыгин, В.А. Мельников // Магнитооптическое исследование приповерхностной микромагнитной структуры и локальных магнитных свойств исходных и отожженых NiFe/Cu микропроволок //Сборник трудов конференции XX международной конференции школы-семинара, Москва (2006) с.841-843.
- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, L.V. Kozlovskii // Peculiarities of near-surface magnetic properties of nanocrystalline magnetic materials // Booklet of abstracts of International conference on fine particle magnetism, Rome, Oct. 9-12, 2007, p.183.
- E.E. Shalyguina, A.F. Prokoshin, A.N. Shalygin, V.A. Melnikov // Magnetooptical investigation of local magnetic properties and micromagnetic structure of 81NMA/Nb as-cast and annealed microwires // Book of abstracts of 18th Soft magnetic materials conference, September 2-5, 2007, Cardiff, United Kingdom, p.23.
- E.E. Shalyguina, V.V. Molokanov, M.A. Komarova, V.A. Melnikov, A.N. Shalygin // Peculiarities of near-surface magnetic properties of heterogeneous nanocrystalline magnetic materials // Book of Abstracts of

Ninth International Workshop on Non-Crystalline Solids, Porto, 27-30 April 2008, p. 70.

 E.E. Shalygina, G.V. Maximova, M.A. Komarova, V.A. Melnikov, A.N. Shalygin, V.V. Molokanov // Magnetic field behavior of heterogeneous magnetic materials // Book of Abstracts of MISM-08, Moscow, 2008, p. 723-724.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

- 1. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64 (1988) 6044.
- K. Suzuki, A. Makino, A. Inoue, T. Masumoto, Low core losses of nanocrystalline Fe-M-B (M=Zr, Hf or Nb) alloys, J. Appl. Phys. 74 (1993) 3316.
- A. Makino, T. Hatanai, A. Inoue, T. Masumoto, Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb) alloys and their applications, Mater. Sci. Eng. A 226-229 (1997) 594-602.
- L.V. Panina, K. Mohri, Effect of magnetic structure on giant magnetoimpedance in Co-rich amorphous alloys, J. Magn. Magn. Mater. 157/158 (1996) 137-140.
- 5. G. Herzer, Nanocrystalline soft magnetic materials, J. Magn. Magn. Mater. 157/158 (1996) 133-136.
- 6. A.S. Arrot, in Nanomagnetism, edited by A. Hernando (Kluwer, Dordrecht, 1993).
- D. Atkinson, P.T. Squire, M.R.J. Gibbs, S. Atalay, D.G. Lord, The effect of annealing and crystallization on the magnetoelastic properties of Fe-Si-B amorphous wire, J. Appl. Phys. 73 (1993) 3411-3417.J. Magn. Magn. Mater. 53 (1986) 323.
- 8. Г.С. Кринчик, Физика магнитных явлений, Изд. МГУ, 1985, с. 336.
- 9. R.M. Bozorth, Ferromagnetism, D. Van Nostrand Comp., Inc., Toronto, New York,-London, 1951, p. 157.