Государственный экзамен по физике
Физический факультет МГУ им. М.В. Ломоносова
Магистерская программа
«Физика микромира»
Билет № 1
2. Кварковая структура мезонов. Свойства мезонов. Кварковая структура барионов. Экзотические мезоны. Очарованные барионы и мезоны. Сходства и различия со странными частицами. Чарммоний.
3. Построить диаграмму Фейнмана распада мюона. Проанализировать законы сохранения лептонных зарядов в этом распаде.

Билет № 2
1. Элементарная теория деления. Энергия деления. Деление атомных ядер нейтронами. Деление изотопов урана 238\(\text{U} \) и 235\(\text{U} \) нейтронами. Осколки деления
2. Общие свойства адронных атомов. Пион-ядерное взаимодействие. Δ-резонанс. Пионные атомы. Каон-ядерное взаимодействие. Взаимодействие K-мезонов с ядрами. Взаимодействие нейтральных каонов с ядрами.
3. Для распада Δ\(^{++}\) резоананса (J\(^{P}\) = (3/2)\(^{+}\)) \(\Delta^{++} \rightarrow p+\pi^{+} \), определить суммарный орбитальный момент испущенных адронов.

Билет № 3
2. Методы регулировки нейтринно. Обратный бета-распад. Радиохимический метод. Сцинтилляционный метод. Детектор SNO. Детектор JUNO. Черенковские нейтринные телескопы. Принцип работы. Нейтринный комплекс в Камиоке. Детекторы и достижения. Методы обнаружения осцилляции. Детекторы OPERA, NOvA, LBNE.
3. Построить диаграмму Фейнмана для распада положительного π-мезона. Рассчитать энергию продуктов распада.

Билет № 4
1. Взаимодействие гамма-квантов с веществом. Взаимодействие нейтронов с веществом. Замедление нейтронов. Взаимодействие мюонов с веществом
2. Основные физические характеристики нейтринно. Основные типы взаимодействия с веществом. Взаимодействие нейтринно с атомными ядрами. Взаимодействие нейтринно с нуклонами и кварками. Классификация нейтринно по источникам и энергиям. Спектр нейтринно.
3. Определить мультипольность γ-квантов, при переходах ядра \(^{17}\text{O} \) из первого возбужденного состояния 1/2\(^{+}\) в основное состояние. На основе модели оболочек указать конфигурационную структуру основного и возбужденного состояний ядра \(^{17}\text{O} \).