ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО ФИЗИКЕ
Физический факультет МГУ им. М.В. Ломоносова

Магистерская программа
«СИСТЕМНЫЙ АНАЛИЗ,
ФИЗИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ
МОДЕЛИРОВАНИЯ И УПРАВЛЕНИЯ»
БИЛЕТ № 1

Вопрос 1
Описание динамики и статики линейных и нелинейных систем в переменных «вход-выход».

Вопрос 2
Классические методы коррекции динамических характеристик автоматических систем.

Вопрос 3
Особые решения в задачах оптимального управления.

Задача 1
Для объекта регулирования, заданного блок-схемой вида

получите уравнения в переменных состояния.

Задача 2
Исследуйте вопрос устойчивости автоматической системы, представленной структурной схемой:

где

$$V(s) = \frac{s+1}{s^3 + 2s^2 + 2s + 3}.$$

Задача 3
Что из себя представляет геометрическое место точек, в которых евклидова норма градиента функции

$$V(x_1, x_2) = x_1^2 + x_2^2$$

постояна?
Вопрос 1
Описание динамики и статики линейных и нелинейных систем в переменных состояния.

Вопрос 2
Постановка, матричный и полиномиальный методы решения задачи модального управления.

Вопрос 3.
Необходимые условия в задачах конструирования программных движений.

Задача 1
При каких значениях параметров корректирующего устройства САР имеет нулевую установившуюся ошибку по положению?

Задача 2
Выделите вполне управляемую и наблюдаемую часть системы, представленной структурной схемой:

Задача 3
Для динамической системы второго порядка, описывающейся уравнениями
\[\dot{x}_1 = x_2, \]
\[\dot{x}_2 = -x_1, \]
определите время движения изображающей точки в верхней полуплоскости \(x_2 \geq 0 \) из положения \((-1,0)\).
Вопрос 1
Определение устойчивости системы по Ляпунову. Первый метод Ляпунова исследования устойчивости нелинейных систем.
Вопрос 2
Постановка и метод решения задачи синтеза полных наблюдаемых устройств Люенбергера.
Вопрос 3
Дифференциальные игры как задачи оптимального управления.

Задача 1
Для САР, представленной блок-схемой, найдите передаточную функцию.

Задача 2
Установите тип фазового портрета системы
\[
\dot{x} = Ax, \quad A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}.
\]

Задача 3
Для системы, представленной структурной схемой:

\[
x \xrightarrow{\frac{2}{(s+1)^2}} \xrightarrow{\frac{3(s+1)}{(s+2)^2}} y
\]

определите динамический порядок ее вполне управляемой и наблюдаемой части.
Вопрос 1
Условия устойчивости линейных динамических систем.
Алгебраические и частотные критерии устойчивости.

Вопрос 2
Метод синтеза и особенности реализации редуцированных наблюдающих устройств.

Вопрос 3
Принцип максимума Л.С. Понтрягина в задачах оптимального управления.

Задача 1
Для системы с передаточной функцией в прямой цепи

\[W(s) = \frac{K(\tau s + 1)}{(T_1 s + 1)(T_2 s + 1)} \]

определить коэффициент в цепи обратной связи \(K_{oc} \), обеспечивающий свойство астатизма первого порядка.

Задача 2
Определите степень устойчивости системы

\[\dot{x} = Ax, \quad A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}. \]

Задача 3
С помощью второго метода Ляпунова исследуйте устойчивость равновесного состояния \(x = (0, 0) \) системы

\[\dot{x}_1 = -x_1 |x_2|, \]
\[\dot{x}_2 = -x_2 (1 + |x_2|). \]
БИЛЕТ № 5

Вопрос 1
Качество автоматических систем в установившемся режиме. Расчет установившейся ошибки.

Вопрос 2
Особенности задачи модального управления многомерными объектами. Синтез одноранговых модальных регуляторов.

Вопрос 3
Достаточные условия в задачах конструирования программных движений.

Задача 1
Исследуйте управляемость динамической системы, заданной уравнениями в переменных состояния:

\[\begin{align*}
\dot{x}_1 &= x_2 + u, \\
\dot{x}_2 &= x_1 + x_3, \\
\dot{x}_3 &= x_1 + x_2 + u, \\
y &= x_1 + x_3.
\end{align*} \]

Задача 2
Определите степень устойчивости \(\delta \) замкнутой САР, представленной структурной схемой:

\[V(s) = \frac{3(s+1)}{s^2 + 4}. \]

Задача 3
Установите тип фазового портрета системы

\[\dot{x} = Ax, \quad A = \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}. \]
БИЛЕТ № 6

Вопрос 1
Качество автоматических систем в переходном режиме.
Прямые показатели качества системы.

Вопрос 2
Принцип разделения в задаче синтеза модального регулятора
в условиях отсутствия информации о состоянии объекта.

Вопрос 3
Принцип оптимальности Р.Беллмана и метод динамического
программирования.

Задача 1
Для системы заданной тройкой матриц (A, B, C), записать
уравнение в переменных «вход – выход».

\[
A = \begin{bmatrix}
-1 & 1 & 0 \\
0 & -4 & 2 \\
-1 & 5 & -1
\end{bmatrix}, \quad B = \begin{bmatrix}
0 \\
1 \\
3
\end{bmatrix}, \quad C = \begin{bmatrix}
1 & 0 & 0
\end{bmatrix}.
\]

Задача 2
Исследовать на устойчивость тривиальное решение системы:

\[
\dot{x}_1 = -3x_1 + x_1 x_2^4 - x_1^3 x_2^6,
\]

\[
\dot{x}_2 = -\frac{1}{2} x_1^2 x_2 - \frac{1}{4} x_2^3.
\]

Задача 3
Исследуйте вопрос наблюдаемости системы, динамика которой
описывается уравнениями:

\[
\dot{x}_1 = -x_1,
\]

\[
\dot{x}_2 = -x_2,
\]

\[
y = x_1 + x_2.
\]
Вопрос 1
Управляемость и наблюдаемости динамических систем.
Критерии управляемости и наблюдаемости.

Вопрос 2
Метод фазовой плоскости исследования динамики нелинейных систем. Виды особых точек и фазовый портрет системы.

Вопрос 3
Связь метода динамического программирования с принципом максимума (минимума) Л.С. Понтрягина.

Задача 1
Найти коэффициент гармонической линеаризации логического устройства, описываемого следующими соотношениями:

$$y(x) = \begin{cases}
C, & x > \Delta \text{ и } x > -\delta; \\
0, & x > \Delta \text{ и } x < -\delta; \\
0, & |x| > \Delta; \\
0, & x < -\Delta \text{ и } x > \delta; \\
-C, & x > -\Delta \text{ и } x < \delta.
\end{cases}$$

Задача 2
Исследуйте устойчивость начала координат нелинейной системы

$$\dot{x}_1 = -x_1(1 + x_2^2),$$
$$\dot{x}_2 = -x_2,$$

по второму методу Ляпунова.

Задача 3
Сравните периоды колебаний гармонического осциллятора

$$\ddot{y} + y = 0,$$

и нелинейного осциллятора Дюффинга

$$\ddot{y} + y^3 = 0.$$
Вопрос 1
Компенсационно-модальный метод синтеза систем автоматического регулирования.

Вопрос 2
Метод гармонической линеаризации исследования периодических движений нелинейных автоматических систем.

Вопрос 3
Задача со свободным правым концом и заданным временем окончания переходного процесса.

Задача 1
Найдите параметры (амплитуду и частоту) предельных циклов в нелинейной системе управления вида

![Diagram](image)

Задача 2
Построить область устойчивости системы в плоскости параметров \((k, \tau)\).

![Diagram](image)

Задача 3
Установите тип фазового портрета системы

\[\dot{x} = Ax, \quad A = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}.\]
Вопрос 1
Метод автономизации (динамической развязки) многосвязных систем автоматического регулирования.

Вопрос 2
Абсолютная устойчивость нелинейных автоматических систем.
Критерии абсолютной устойчивости В. Попова и А. Воронова.

Вопрос 3
Задача с фиксированными значениями некоторых переменных состояния в заданный момент окончания переходного процесса.

Задача 1
Найдите параметры (амплитуду и частоту) и исследовать устойчивость предельных циклов в нелинейной системе управления вида

\[W(s) = \frac{\tau s + 1}{s^2} \]

Задача 2
Найдите точки равновесия системы:
\[\lambda_1 = -x_1 (1 + x_2^2), \]
\[\lambda_2 = -x_1^5. \]

Задача 3
Для объекта регулирования вида

с параметрами: \(K=10, \tau=0.05, T=0.5 \), постройте регулятор, обеспечивающий в замкнутой системе кратный полюс, равный \(-5\).
Вопрос 1
Робастность и чувствительность автоматических систем.
Критерий робастной устойчивости Харитонова.

Вопрос 2
Второй метод Ляпунова исследования устойчивости
линейных и нелинейных динамических систем.

Вопрос 3
Задача со свободным правым концом и заданным временем
окончания переходного процесса.

Задача 1
Найдите параметры (амплитуду и частоту) предельного цикла
в нелинейной системе управления вида

\[
\begin{align*}
W(s) &= \frac{k}{s^2} \\
\end{align*}
\]

с параметрами: \(c=3; b=2; k=5\).

Задача 2
Исследуйте на устойчивость положения равновесия системы \((x = 0, y = 0)\),
описываемой уравнениями:

\[
\begin{align*}
\dot{x} &= -2xy - 1, \\
\dot{y} &= -1,2x + x^2.
\end{align*}
\]

Задача 3
Исследуйте вопрос наблюдаемости свободной системы, динамика
которой описывается уравнениями

\[
\begin{align*}
\dot{x}_1 &= x_1, \\
\dot{x}_2 &= -2x_1 - 3x_2, \\
y &= x_2.
\end{align*}
\]
Вопрос 1
Принцип «глубокой обратной связи» в задачах синтеза
робастных систем автоматического регулирования.

Вопрос 2
Синтез линейных и гладких нелинейных систем управления
методом обратных задач динамики

Вопрос 3
Задача с фиксированными значениями некоторых переменных
состояния в неопределенной момент окончания переходного процесса

Задача 1
Найдите параметры (амплитуду и частоту) и исследовать устойчивость
пределных циклов в нелинейной системе управления вида

\[y^* \rightarrow \frac{c}{m} \rightarrow \frac{k}{s(Ts+1)} \rightarrow y \]

с параметрами: \(c=1; \ b=2; \ m=0,8; \ k=10; \ T=0,1 \).

Задача 2
Определите установившееся значение \(h(\infty) \) переходной функции системы,
если её передаточная функция равна:

\[W(s) = \frac{e^{-3s}(5s+7)}{s^2+4s+9} \]

Задача 3
Определите коэффициент усиления \(k \) и время изодрома \(T \) регулятора,
обеспечивающего замкнутой САР заданные кратные полосы: \(\lambda_1 = \lambda_2 = -1 \).

\[\frac{3}{10s+1} \]
Вопрос 1
Постановка и решение задачи аналитического синтеза линейных систем терминального управления.

Вопрос 2
Синтез нелинейных систем управления с желаемой динамикой методом локализации (управление по высшей производной).

Вопрос 3
Задача оптимизации расхода ресурсов управления.

Задача 1
Для объекта управления, заданного блок-схемой вида

\[
\begin{align*}
\text{у} & \quad \frac{L(\omega)}{10} \\
\omega & \quad \frac{0}{\omega = 1} \\
\end{align*}
\]

получите уравнения в переменных состояния.

Задача 2
Определите, при каких значениях к является абсолютно устойчивым положение равновесия нелинейной системы управления.

Задача 3
Дана передаточная функция системы

\[
W(s) = \frac{-4(s + \alpha)}{s^2 + 3s + 2}.
\]

Определите при каком значении параметра а она теряет свойство полной управляемости и наблюдаемости.
Вопрос 1
Метод линейных матричных неравенств в задачах синтеза робастных модальных регуляторов

Вопрос 2
Синтез нелинейных систем управления методом линеаризации обратной связью

Вопрос 3
Задача об оптимальном быстродействии при ограничениях на управляющие воздействия

Задача 1
Выясните знакопределенность функции

$$V(x_1, x_2) = |x_1| (1 + \cos(x_2)) + x_2^2.$$

Задача 2
Исследуйте абсолютную устойчивость нелинейной системы вида

с параметрами: $k_1=5$; $k_2=25$; $T=5$.

Задача 3
Для объекта регулирования с передаточной функцией вида

$$W(s) = \frac{(\tau s + 1)}{s(0.1 s - 1)}$$

постройте регулятор, обеспечивающий замкнутой системе полюса: -2 и -5.

Вопрос 1
Анализ компенсационного подхода к синтезу линейных автоматических систем.

Вопрос 2
Особенности поведения и исследования нелинейных автоматических систем.

Вопрос 3
Управление с обратной связью в задаче с заданным временем окончания переходного процесса.

Задача 1
Для системы с входом \(u(t) \) и выходом \(y(t) \), процессы в которой описываются уравнениями:

\[
0,2 \frac{dy}{dt} + y(t) = 5z(t); \quad 0,1 \frac{d^2 z}{dt^2} + 4 \frac{dz}{dt} z(t) = 10u(t)
\]

составьте модель в переменных состояния.

Задача 2
Определите порядок вполне управляемой и наблюдаемой части системы с данной структурной схемой.

\[
\begin{align*}
W_1(s) & \quad W_2(s) = \frac{1}{s+1} \quad W_3(s) = \frac{1}{s(s+1)(s+2)}
\end{align*}
\]

Задача 3
Для системы

\[
\dot{x}_1 = x_2, \\
\dot{x}_2 = -4x_1,
\]

определите время движения изображающей точки в положительном квадранте фазовой плоскости: \(x_1 \geq 0, x_2 \geq 0 \) из положения \((0,1) \).
Вопрос 1
Метод линейных матричных неравенств в задачах линейно-
квадратичной оптимизации (задача АКОР).

Вопрос 2
Формализация и решение задачи синтеза нелинейных систем
управления методом математического программирования

Вопрос 3
Линейные игры преследования с квадратичным функционалом

Задача 1
Найдите установившееся значение переходной функции системы,
если ее передаточная функция равна
\[W(s) = \frac{(s + 4)e^{-2s}}{s^2 + 4s + 1}. \]

Задача 2
Для объекта управления с вектором состояния \(x = (x_1, x_2) \):
\[\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u; \]
\[y = x_1 \]
постройте регулятор, обеспечивающий замкнутой системе регулирования
свойство генератора синусоидальных колебаний частоты \(\omega \),
t.е. условие: \(y = \sin \omega t \).

Задача 3
При каком параметре \(\alpha \) система с передаточной функцией:
\[W(s) = \frac{3(s+1)}{s^3 + \alpha} \]
теряет свойство полной управляемости и наблюдаемости?