Теоретический минимум к зачету по квантовой теории (1-й поток)

(весна 2125 г.)

1. Матрица плотности:

- ullet условие нормировки для матрицы плотности $\hat{
 ho}=?$
- среднее значение наблюдаемой $\langle \hat{A} \rangle$, если система находится в состоянии с матрицей плотности $\hat{\rho} = ?$
- вероятность пребывания в чистом состоянии $|\psi\rangle$, если система находится в состоянии с матрицей плотности $\hat{\rho}=?$
- необходимое и достаточное условие чистоты состояния, если система находится в состоянии с матрицей плотности $\hat{\rho}=?$ связь между $\hat{\rho}$ и волновой функцией $|\psi\rangle$ в этом случае =?

2. Волновая функция:

- ullet условие нормировки волновой функции $|\psi
 angle = ?$
- среднее значение наблюдаемой $\langle \hat{A} \rangle$, если система находится в состоянии с волновой функцией $|\psi\rangle = ?$
- вероятность пребывания в чистом состоянии $|\xi\rangle$, если система находится в состоянии с волновой функцией $|\psi\rangle$ = ?
- 3. Измерение наблюдаемой \hat{A} (чисто дискретный невырожденный спектр):
 - вероятность получить значение a_i , если система находится в состоянии с матрицей плотности $\hat{\rho}=?$
 - вероятность получить значение a_i , если система находится в состоянии с волновой функцией $|\psi\rangle = ?$
- 4. Составные системы:
 - выражение для матрицы плотности подсистемы = ?
- 5. Динамика:
 - Уравнение Линдблада = ?
 - Уравнение Гайзенберга для произвольного оператора $\hat{A}=\hat{A}$
 - Нестационарное уравнение Шредингера (общий случай) = ?
 - Стационарное уравнение Шредингера (общий случай) = ?
- 6. Одномерное движение материальной точки:
 - каноническое коммутационное соотношение $[\hat{x}, \hat{p}] = ?$
 - нестационарное уравнение Шредингера в координатном представлении =?
 - стационарное уравнение Шредингера в координатном представлении = ?
 - уравнение непрерывности = 3
- 7. Гармонический осциллятор:
 - $[\hat{a}, \hat{a}^+] = ?$
 - $\hat{a}|n\rangle =?$ $\hat{a}^+|n\rangle =?$
 - уровни энергии $E_n = ?$
 - когерентное состояние $|\alpha\rangle$: $\hat{a}|\alpha\rangle=?$ $\langle\alpha|\hat{a}^+=?$
- 8. Трехмерное движение материальной точки:
 - канонические коммутационные соотношения $[\hat{x}_i, \hat{p}_i] = ?$
 - нестационарное уравнение Шредингера в координатном представлении =?
 - уравнение непрерывности = ?
- 9. Момент:
 - определение момента = ?
 - $\langle \ell' m' | \ell m \rangle = ?$ $\vec{\ell}^2 | \ell m \rangle = ?$ $\ell_z | \ell m \rangle = ?$ $\ell_+ | \ell m \rangle = ?$ $\ell_- | \ell m \rangle = ?$
 - определение скалярного и векторного операторов = ?

- матричные элементы скалярного оператора A: $\langle \ell' m' | A | \ell m \rangle = ?$ 10. Формулы для операторов:
 - $\exp(\hat{A})\hat{B}\exp(-\hat{A}) = ?$
 - если $[\hat{A}, \hat{B}] = \lambda$, то $[\hat{A}, f(\hat{B})] = ?$ явный вид матриц Паули $\sigma_i = ?$

 - $(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) = ?$