Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» Физический факультет

УТВЕРЖДАЮ

И.о. декана физического факультета МГУ, профессор, д.ф.-м.н.

// / В.В. Белокуров /

<u>ге</u> » <u>марта</u> 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Лазерная физика

Laser Physics

Программа (программы) подготовки научных и научно-педагогических кадров в аспирантуре Лазерная физика (103-01-00-1319-фмн)

Рабочая программа дисциплины разработана в соответствии с Приказом по МГУ от 24 ноября 2021 года № 1216 «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых Московским государственным университетом имени М.В.Ломоносова».

1. Краткая аннотация:

Название дисциплины: Лазерная физика.

Излагаемый материал соответствует современному состоянию проблем лазерной физики и нелинейной оптики и охватывает все вопросы, включенные в программу кандидатского минимума по специальности 1.3.19 «Лазерная физика». В курсе рассматриваются такие разделы как основы физики лазеров и лазерной техники, вещество в лазерном поле, лазерная диагностика, волновые процессы, нелинейная волновая оптика, воздействие лазерного излучения на вещество, лазерная фотофизика и фотобиология, физические основы лазерных технологий, элементы квантовой оптики. Слушателям предлагается структурированная и самосогласованная выжимка из большого объема материала, знание которого, необходимо для успешной сдачи кандидатского экзамена. Приводится обзор и анализ ключевых достижений последних лет по основным разделам лазерной физики и нелинейной оптики. В том числе анализируются фемтосекундные лазерные системы высокой пиковой мощности, демонстрируются примеры актуальных задач распространения излучения, решаемых на основе уравнений Максвелла, в том числе с учетом наведенного сильным полем двулучепреломления и вращения эллипса поляризации излучения, генерации терагерцового излучения из плазмы оптического пробоя газов. Рассматриваются новейшие примеры биомедицинских применений мощного ультракороткого лазерного излучения для офтальмологии и микрохирургии глаза. Обсуждаются инновационные технологии, основанные на взаимодействии мощного лазерного излучения с прозрачными средами, рассматривается вызванная сильным лазерным полем конденсация среды и управление атмосферным электричеством. Большинство вопросов, рассматриваемых в данном курсе, будут полезны аспирантам, готовящимся к сдаче кандидатского минимума по специальностям "Радиофизика", "Оптика" и " Акустика".

Цель изучения дисциплины – расширение и углубление знаний о современном состоянии и тенденциях развития в области физики лазеров, нелинейной и волновой оптики, оптики сверхбыстрых процессов, взаимодействия излучения с веществом.

- 2. Уровень высшего образования подготовка кадров высшей квалификации.
- 3. Научная специальность: 1.3.19 Лазерная физика; область науки: естественные науки.
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры: дисциплины (модули), направленные на подготовку к кандидатским экзаменам Дисциплина, совпадающая с наименованием научной специальности.
- 5. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет **3** зачетных единицы, всего **108** часов, из которых **54** часа составляет контактная работа аспиранта с преподавателем (52 часа занятия лекционного типа, 2 часа мероприятия текущего контроля успеваемости и промежуточной аттестации), **54** часа составляет самостоятельная работа учащегося.

6. Входные требования для освоения дисциплины (модуля), предварительные условия.

Необходимы знания высшей математики и общей физики в объеме курсов, преподаваемых на физических специальностях классических университетов, полученных на предыдущих уровнях высшего образования.

7. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое	Всего					В том числе				
содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации	(часы)	K	онтактна	-	(работа в авателем) из них	о взаимодействі), часы	ии с	Самостоятельная работа обучающегося, часы из них		
по дисциплине (модулю) Тема 1. Основы физики дазеров и		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточн ой аттестации	Bcero	Выполнение домашних заданий	Подготовка к коллоквиумам	Всего
Тема 1. Основы физики лазеров и лазерной техники										
1.1 Уравнения Максвелла. Потенциальные и вихревые поля. Теорема Умова-Пойнтинга. Поляризация электромагнитных волн; параметры Стокса. Уровни энергии атомов, молекул, кристаллов. Поглощение и испускание электромагнитного излучения. Вероятности спонтанных и индуцированных переходов.	6	4					4	2		2
1.2. Принцип действия лазеров. Методы создания инверсии	6	4					4	2		2

населенностей. Релаксационные процессы. Ширина линии перехода. Коэффициент усиления. Эффект насыщения. Оптические резонаторы. Спектр мод резонатора. Добротность резонатора. Устойчивые и неустойчивые резонаторы. Методы модуляции добротности резонатора лазера. Методы активной и пассивной синхронизации мод излучения в лазере.							
1.3. Основные типы лазеров. Динамика лазерной генерации. Классификация режимов лазерной генерации. Порог генерации. Мультистабильность и динамический хаос в лазерах. Флуктуации лазерного излучения. Естественная ширина линии и естественная расходимость лазерного излучения. Предельная пространственная когерентность лазерных пучков. Стабилизация частоты генерации (активная и пассивная). Стабилизация интенсивности. Перестройка частоты лазерной генерации. Методы измерения длительности лазерных импульсов.	6	4			4	2	2
Тема 2. Вещество в лазерном поле. Лазерная диагностика							

2.1 Отклик вещества на действие электромагнитного поля. Векторы поляризации и намагниченности среды. Разложение поляризации в ряд по степеням поля. Временная (частотная) и пространственная дисперсия. Тензоры линейной и нелинейной восприимчивостей вещества. Влияние симметрии среды на нелинейный отклик. Механизмы поверхностного нелинейного отклика.	6	4			4	2	2
2.2 Резонансные процессы. Двухуровневый атом. Уравнения Блоха. Когерентные нестационарные процессы: оптическая нутация, затухание свободной поляризации, солитоны самоиндуцированной прозрачности, фотонное эхо, сверхизлучение Дике. Светоиндуцированный дрейф в газах.	6	4			4	2	2
2.3 Взаимодействие электромагнитного излучения с кристаллами. Зонная структура энергетических уровней. Энергия Ферми. Диэлектрики, полупроводники, металлы. Возбуждения в кристаллах: фононы, поляритоны, экситоны. Основные нелинейные кристаллы.	6	2			2	4	4

Спектроскопия насыщения неоднородно уширенных переходов. Двухфотонная спектроскопия, свободная от допплеровского уширения. Спектроскопия когерентного антистоксова рассеяния света. Спектроскопия многоволнового смешения							
Тема 3. Волновые процессы. Нелинейная волновая оптика. Прикладная нелинейная оптика.							
3.1 Волновая оптика световых пучков и импульсов: уравнения Максвелла, волновое уравнение, уравнения квазиоптики, уравнения для медленно меняющихся амплитуд. Гауссовы пучки, их преобразование оптическими системами. Дифракционное расплывание, длина дифракции. Волны в световодах. Дифракция случайных волновых полей, теорема Ван Циттерта-Цернике.	6	4			4	2	2
3.2 Материальная дисперсия сплошной среды. Распространение импульсов в диспергирующих средах: групповая скорость, дисперсионное расплывание, эффекты дисперсии высших порядков. Спектрально	6	4			4	2	2

ограниченный импульс. Волны в пространственно- периодических средах. Запрещенная зона. Фотонные кристаллы и их дисперсионные свойства.							
3.3 Фурье-оптика волновых пучков и импульсов; пространственная фильтрация. Основы адаптивной оптики: управление фазой световых колебаний в пространстве и во времени, формирование пучков и импульсов с заданной структурой. Волны в слабонелинейных и диспергирующих средах: методы описания и классификация нелинейных эффектов	6	2			2	2	2
3.4 Самовоздействие световых пучков. Природа кубической нелинейности. Самофокусировка в средах с керровской нелинейностью, критическая мощность, длина самофокусировки. Мелкомасштабная самофокусировка. Филаментация. Самовоздействие световых импульсов в средах с кубичной нелинейностью: самомодуляция, солитоны, компрессия и расплывание. Самовоздействие случайно модулированных импульсов. Формирование сверхкоротких импульсов методами фазовой самомодуляции и	6	4			4	2	2

компрессии.							
3.5 Генерация оптических гармоник. Фазовый синхронизм и его реализация, групповой синхронизм. Спонтанное параметрическое рассеяние света. Параметрическое усиление и генерация. Генерация суммарных и разностных частот. Вынужденное комбинационное рассеяние. Рамановские усилители и генераторы. Вынужденное рассеяние Мандельштама-Бриллюэна. Обращение волнового фронта.	6	2			2	4	4
3.6 Оптические бистабильные и мультистабильные системы. Оптические логические элементы. Продольная неустойчивость в нелинейных резонаторах: от периодических колебаний через удвоение периода к оптическому хаосу. Поперечные пространственные эффекты в нелинейных резонаторах, образование и эволюция пространственных структур. Оптическое моделирование нейронных сетей.	4	2			2	2	2
Тема 4. Воздействие лазерного излучения на вещество. Лазерная фотофизика и фотобиология. Физические основы лазерных							

технологий							
4.1 Одно- и многофотонная ионизация атомов и молекул. Туннельная и надбарьерная ионизация атомов и ионов. Пондеромоторное ускорение фотоэлектронов. Уширение спектра. Генерация высоких оптических гармоник и суперконтинуума. Генерация каскада комбинационных частот.	6	2			2	4	4
4.2 Лазерный пробой газов. Лазерная искра. Лазерная плазма. Лазерный термоядерный синтез. Энергетические спектры электронов, ионов и рентгеновского излучения лазерной плазмы. Ядерные реакции в лазерной плазме.	6	2			2	4	4
4.3 Многофотонная диссоциация молекул в лазерном поле. Столкновительный и бесстолкновительный режимы многофотонной диссоциации. Лазерное разделение изотопов. Оптическое стимулирование химических реакций. Лазерное управление движением частиц. Оптическое охлаждение и захват атомов и ионов. Атомные часы. Управление атомными пучками с помощью лазеров. Лазерные методы	3	1			1	2	2

ускорения частиц.							
4.4 Поглощение и релаксация энергии лазерного излучения в полупроводниках и металлах. Электрон-электронная, электронфононная и фонон-фононная релаксации. Нормальный и аномальный скинэффект. Лазерный нагрев вещества. Лазерное плавление и испарение поверхности. Лазерный отжиг и легирование полупроводников. Лазерная закалка металлов. Процессы абсорбции и десорбции в поле лазерного излучения. Лазерная фотохимия, типы фотохимических реакций. Фотоакустические явления. Механизмы лазерного возбуждения звука. Фотоакустическая спектроскопия и микроскопия.	3	1			1	4	4
4.5 Лазерная фотобиология. Фотобиологические реакции: энергетические (фотосинтез), информационные (зрение), биосинтетические, деструктивно- модифицирующие (фотосенсибилизация, фотоионизация) и лазерные методы их изучения. Лазерная микро- и макродиагностика биомолекул, клеток и биотканей. Лазерная оптико-акустическая томография.	6	2			2	4	4

Тема 5. Элементы квантовой оптики							
5.1 Квантование поля. Операторы рождения и уничтожения фотонов. Гамильтониан квантованного поля. Коммутационные соотношения для операторов поля. Пространственная и временная когерентность. Корреляционные функции первого и второго порядка. Когерентность высших порядков. Фоковское, когерентное и сжатое состояния поля. Пуассоновская, субпуассоновская и суперпуассоновская и суперпуассоновская статистика фотонов. Группировка и антигруппировка фотонов. Счет фотонов. Дробовой шум. Связь статистики фотонов и фотоотсчетов, формула Манделя.	6	2			2	4	4
5.2 Перепутанные состояния света. Оптическая реализация кубитов и их преобразования. Состояния Белла. Парадокс Эйнштейна-Подольского-Розена. Неравенства Белла. Квантовая криптография. Квантовая телепортация	6	2			2	4	4
Промежуточная аттестация: допуск к кандидатскому экзамену	2			2	2		

Итого	108	52				2	54	54		54
-------	-----	----	--	--	--	---	----	----	--	----

8. Образовательные технологии

Используемые формы и методы обучения: лекции и семинарские занятия, самостоятельная работа аспирантов.

В процессе преподавания дисциплины преподаватель использует как классические формы и методы обучения (лекции и семинарские занятия), так и активные методы обучения.

При проведении лекционных занятий преподаватель использует при необходимости аудиовизуальные, компьютерные и мультимедийные средства обучения, а также демонстрационные и наглядно-иллюстрационные (в том числе раздаточные) материалы.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю): аспирантам предоставляется программа курса, план занятий и задания для самостоятельной работы, презентации к лекционным занятиям.

10. Ресурсное обеспечение:

Основная литература:

- 1. Ахманов С.А., Никитин С.Ю., Физическая оптика. Издательство Московского Университета, 2004.
- 2. Алешкевич В.А. ОПТИКА. М. "Физматлит". 2010.
- 3. М. Б. Виноградова, О. В. Руденко, А. П. Сухоруков. Теория волн. М.: Наука, 1990.
- 4. О.Звелто. Принципы лазеров. С-П.:Лань.2008.
- 5. Матвеев А.Н. Оптика. М.: Высшая школа, 1985.
- 6. Карлов Н.В. Лекции по квантовой электронике. М., 1988.
- 7. Шен И.Р. Принципы нелинейной оптики. М., 1989.
- 8. Ханин Я.И. Основы динамики лазеров. М., 1999.
- 9. Ильинский Ю.А., Келдыш Л.В. Взаимодействие электромагнитного излучения с веществом. М., 1989.
- 10. Летохов В.С., Чеботаев В.П. Принципы нелинейной лазерной спектроскопии. М., 1990.
- 11. Приезжев А.В., Тучин В.В., Шубочкин Л.П. Лазерная диагностика в биологии и медицине. М., 1989.
- 12. Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях. Саратов, 1998.
- 13. Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М., 1991.
- 14. Чжан С.-Ч., Шю Д., Терагерцовая фотоника, М., 2016.
- 15. Андреев А.В., Емельянов В.И., Ильинский Ю.А. Кооперативные явления в оптике. М., 1988.
- 16. Мандель Л., Вольф Э. Оптическая когерентность и квантовая оптика. М.: Физматлит, 2000.
- 17. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. Монография. Пер. с англ М.: Мир, 2006.

Дополнительная литература:

- 1. Шерклиф У. Поляризованный свет. М.: Мир, 1965.
- 2. Корниенко Л.С., Наний О.Е. Физика лазеров. Ч.1, 2. М.: Изд-во МГУ, 1996.
- 3. Жарков В.П., Летохов В.С. Лазерная оптико-акустическая спектроскопия. М., 1984.
- 4. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970.
- 5. Аллен Л., Эберли Дж. Оптический резонанс и двухуровневые атомы. М., 1978.
- 6. Гудмен Дж. Введение в фурье-оптику. М., 1970.

- 7. Воронцов М.А., Шмальгаузен В.И. Принципы адаптивной оптики. М.: Наука, 1985.
- 8. Акулин В.М., Карлов Н.В. Интенсивные резонансные взаимодействия в квантовой электронике. М., 1987.
- 9. Гиббс Дж. Оптическая бистабильность. М., 1988.
- 10. Ахманов С.А., Дьяков Ю.Е., Чиркин А.С. Введение в статистическую радиофизику и оптику. М.: Наука, 1981.
- 11. Клышко Д.Н. Физические основы квантовой электроники. М., 1986.
- 12. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.
- 13. Делоне Н.Б., Крайнов В.П. Атом в сильном световом поле. М., Энергоатомиздат, 1984.
- 14. Сухоруков А.П. Нелинейные волновые взаимодействия в оптике и радиофизике. М., 1988.

11. Язык преподавания – русский

12. Преподаватели:

Д.ф.-м.н., профессор Косарева Ольга Григорьевна, e-mail: kosareva@physics.msu.ru, тел.: 8-495-939-30-91.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы домашних заданий:

- 1. Получить выражение для вектора Умова-Пойнтинга из уравнений Максвелла и показать, как вычислить измеряемую в эксперименте величину интенсивности электромагнитного излучения в системах Си и СГС.
- 2. Построить график зависимости максимальной интенсивности в вакуумном фокусе Гауссова пучка от энергии импульса длительностью 30фс при изменении энергии импульса от 0.5 до 100мДж. Привести абсолютные значения величин в Си. Отношение фокусного расстояния к диаметру пучка f/D=0.001 0.2, диаметр пучка по уровню интенсивности 1/e 10мм.
- 3. Выразить соотношение между энергией электронных, колебательных и вращательных уровней энергии атомов и молекул через фундаментальные физические постоянные, привести характерные абсолютные значения энергии этих уровней.
- 4. Получить скоростные уравнения для двухуровневой системы и показать эффект насыщения. Посчитать абсолютную величину интенсивности насыщения. Показать отсутствие эффекта насыщения в четырехуровневой системе.
- 5. Подготовить рисунки оптических схем и аналитического анализа (расчетных формул), описывающих измерение длительности импульса автокорреляционным методом, методом FROG (Frequency Resolved Optical Gating) и методом SPIDER (Spectral Phase Interferometry for Direct Electric Field Reconstruction).
- 6. Получить выражение для нелинейной оптической восприимчивости второго порядка из решения для уравнения движения связанного электрона (уравнения ангармонического осциллятора) в поле плоской электромагнитной волны.
- 7. Получить уравнения для амплитуды волнового пакета в диспергирующей среде в первом, втором и третьем приближениях теории дисперсии. Привести зависимость максимальной интенсивности и длительности Гауссова спектрально-ограниченного импульса от расстояния во втором приближении теории дисперсии.
- 8. Импульс на длине волны 800нм имеет длительность по половине высоты 90 фс, радиус пучка по уровню $1/e\ a_0=2.2$ мм, и энергию 4мДж. Пучок фокусируется трехметровой

- линзой в воздух на лабораторной трассе. На каком расстоянии от линзы будет начало плазменного канала?
- 9. Найти в литературе и указать предельные энергию и длительность сжатых в полом волноводе ультракоротких импульсов в среднем и ближнем инфракрасном диапазоне.
- 10. Описать физические процессы и параметры лазерного излучения характерные для лазерной микрохирургии глаза.

Вопросы для промежуточной аттестации – зачета:

- 1. Получить волновое уравнение из уравнений Максвелла для однородной изотропной среды в системах Си и СГС. Получить взаимную ориентацию волнового вектора и векторов напряженностей электрического и магнитного полей.
- 2. Записать параметры Стокса и показать пример эволюции этих параметров при распространении фемтосекундных импульсов высокой пиковой мощности.
- 3. Получить спектр мод для плоскопараллельного резонатора.
- 4. Какова добротность лазерного резонатора?
- 5. Описать схему генерации, усиления и выходные параметры импульсов в лазерной системе на титан-сапфире.
- 6. Что представляет собой схема усиления чирпированных импульсов?
- 7. Какие методы синхронизации мод используются в фемтосекундных лазерных системах высокой пиковой мощности?
- 8. Перечислите основные типы лазеров и параметры выходного излучения для каждого из типов.
- 9. Запишите нелинейную поляризацию среды второго порядка и перечислите все нелинейные процессы, которые могут происходить в среде с таким нелинейным откликом. Приведите примеры экспериментов по наблюдению перечисленных нелинейных процессов.
- 10. Запишите уравнения Блоха для двухуровневого атома и приведите пример эксперимента, в котором эти уравнения используются для описания происходящих явлений.
- 11. Запишите решение уравнения квазиоптики для сфокусированного Гауссова пучка. Как определить длину перетяжки и дифракционную длину в этом случае?
- 12. Приведите примеры фотонных кристаллов и их дисперсионных свойств.
- 13. Получите выражение для нелинейной части материального отклика среды при филаментации в газах. Запишите выражение для нестационарного нелинейного тока J.
- 14. Опишите безаберрационное самовоздействие пучков. При какой критической мощности дифракция и нелинейная рефракция находятся в равновесии?
- 15. Запишите формулу Марбургера для определения расстояния самофокусировки коллимированного пучка.
- 16. Что такое модуляционная неустойчивость интенсивного светового поля в среде с кубичной нелинейностью?
- 17. Запишите параметр Келдыша и рассчитайте его величину для импульса длительностью 30 фс на длине 800нм и энергией 1 мДж. Как в общем случае определить, в каком режиме, туннельном или многофотонном, проходит вызванная полем ионизация среды?
- 18. Когда возникает лазерный пробой газа?
- 19. Опишите основные явления, происходящие при лазерном термоядерном синтезе.
- 20. Что такое лазерная оптико-акустическая томография?

Методические материалы для проведения процедур оценивания результатов обучения

Зачет проходит по билетам, включающем **3** вопроса. Уровень знаний аспиранта по каждому вопросу на «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». В случае если на все вопросы был дан ответ, оцененный не ниже чем «удовлетворительно», аспирант получает общую оценку «зачтено».

Шкала оценивания знаний, умений и навыков

Результат освоения	Критерии оценивания зн	аний, умений и нав	ыков	
дисциплин	2/	3/	4/	5/
ы	не зачтено	зачтено	зачтено	зачтено
Знания	Отсутствие знаний основных законов лазерной физики	В целом успешные, но не систематические знания основных законов лазерной физики	В целом успешное, но содержащее отдельные пробелы знания основных законов, теоретических моделей и современных методов исследований и математического моделирования в области лазерной физики.	Успешные и систематические знания основных законов, теоретических моделей и современных методов исследований и математического моделирования в области лазерной физики.
Умения	Отсутствие умения применять знание основных законов лазерной физики для решения научных задач	В целом успешное, но не систематическое умение применять знание основных законов лазерной физики для решения научных задач	В целом успешное, но содержащее отдельные пробелы умение применять знание основных законов, теоретических моделей и современных методов исследований и математического моделирования в области	Успешное и систематическое умение применять знание основных законов, теоретических моделей и современных методов исследований и математического моделирования в области лазерной физики

			лазерной физики	для решения
			для решения	научных задач.
			научных задач.	
Навыки	Отсутствие/фрагментарное	В целом	В	Успешное и
	владение навыками	успешное, но не	целом успешное,	систематическое
	решения научных задач в	систематическое	но содержащее	владение
	области лазерной физики	владение	отдельные	навыками
		навыками	пробелы	решения
		решения	владение	научных задач в
		научных задач в	навыками	области
		области	решения	лазерной
		лазерной	научных задач в	физики.
		физики	области	
			лазерной физики	