На правах рукописи

Фролов Игорь Евгеньевич

ДИНАМИЧЕСКИЕ ЭФФЕКТЫ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ ДЛЯ КВАНТОВО-ПОЛЕВЫХ МОДЕЛЕЙ С ФОНОВЫМ АКСИАЛЬНО-ВЕКТОРНЫМ ВЗАИМОДЕЙСТВИЕМ

01.04.02 — Теоретическая физика

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Mockba - 2010

Работа выполнена на кафедре теоретической физики физического факультета Московского государственного университета имени М.В.Ломоносова.

Научный руководитель:	академик РАН, доктор физико-математических наук, профессор А. А. Славнов
Официальные оппоненты:	доктор физико-математических наук, профессор П. А. Эминов
	доктор физико-математических наук, профессор В. И. Денисов
Ведущая организация:	Государственный научный центр Россий- ской Федерации Институт физики высоких энергий, г. Протвино

Защита состоится «___» ____ 2011 г. в ___ ч. ___ мин. на заседании диссертационного совета Д 501.002.10 при Московском государственном университете имени М.В.Ломоносова по адресу: 119991, г. Москва, Ленинские горы, МГУ, дом 1, стр. 2, физический факультет, ауд. «_____».

С диссертацией можно ознакомиться в библиотеке физического факультета МГУ имени М.В.Ломоносова.

Автореферат разослан «____» _____ 20__ г.

Ученый секретарь диссертационного совета Д 501.002.10 доктор физико-математических наук профессор

Ю. В. Грац

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Непертурбативное описание динамических эффектов для релятивистских систем, находящихся во внешних полях, всегда являлось одной из важнейших задач квантовой теории поля. В качестве внешних по отношению к динамическим объектам рассматриваются, как правило, калибровочные поля теории, а также вакуумные конденсаты, появляющиеся при спонтанно нарушенной симметрии; такие модели находят большое число применений в различных областях теоретической физики и приложениях.

В то же время все большее внимание привлекают к себе теоретические модели, в которых рассматриваются не сводимые к традиционным формам фоновые взаимодействия полей материи, обладающие нестандартными свойствами, в частности, нарушающие лоренц-инвариантность и СРТчетность. Такие взаимодействия могут как быть постулированы в теории изначально, так и возникать как следствие динамических процессов.

Особый интерес представляет исследование поведения и специфических особенностей релятивистских систем, сочетающих оба типа взаимодействий: как традиционное, в первую очередь, электромагнитное, так и дополнительное фоновое, нарушающее, например, лоренц-инвариантность.

Актуальность данной темы связана с наличием и интенсивным развитием теоретических направлений, где естественным образом возникает потребность в решении такого рода задач, а изучение порождаемых в рамках соответствующих моделей физических эффектов представляется важным как с теоретической точки зрения, так и с точки зрения возможных экспериментальных приложений в будущем.

В первую очередь среди указанных направлений следует отметить расширенную электродинамику, являющуюся частным случаем расширенной стандартной модели (PCM) — теории, обобщающей стандартную модель и включающей непротиворечивое феноменологическое описание возможного нарушения лоренц-инвариантности и CPT-четности в природе в достаточно общем виде [Colladay, Kostelecký, 1998]. Такое нарушение считается эффектом, способным проявить особенности физики планковских масштабов. Спонтанное нарушение лоренц-симметрии может предположительно происходить, например, в рамках теории струн, где оно сопровождается образованием ненулевых лоренц-тензорных вакуумных средних [Kostelecký, Samuel, 1989]. Лагранжиан РСМ является лоренц-скаляром, но содержит члены, описывающие взаимодействие полей материи с тензорными конденсатами, выступающими в роли внешних параметров. Другим примером является изучение возможности образования пространственно-неоднородных конфигураций (волн плотности) кварковых конденсатов в рамках эффективных теорий квантовой хромодинамики (КХД), в частности, модели Намбу–Йона-Лазинио (НЙЛ). Такая возможность была показана для модели, схожей с НЙЛ [Dautry, Nyman, 1979], а затем подтверждена расчетами в рамках КХД для кварковых сред большой плотности [Deryagin, Grigoriev, Rubakov, 1992]. Особого внимания заслуживает конфигурация конденсатов, известная как дуальная волна киральной плотности (ДВКП), которая допускает (приближенное) сведение модели НЙЛ к модели с наличием фонового аксиально-векторного взаимодействия фермионов. В рамках последней было показано, что ДВКП-фаза может возникать в кварковой среде при низких температурах и умеренной плотности числа частиц [Nakano, Tatsumi, 2005], однако проявление эффекта в присутствии внешних полей не исследовалось.

Цель диссертационной работы

Целью диссертационной работы является изучение теоретико-полевых моделей при наличии у фундаментальных фермионов дополнительного взаимодействия с постоянным аксиально-векторным фоном в присутствии внешнего магнитного поля и исследование возникающих динамических эффектов, а именно: электромагнитного излучения и спонтанного нарушения киральной симметрии.

Научная новизна

В диссертационной работе впервые найдена полная система точных решений модифицированного уравнения Дирака и энергетический спектр для электрона в постоянном однородном магнитном поле с учетом аномального магнитного момента частицы и наличия взаимодействия с аксиальновекторным фоном b^{μ} специального вида.

На основе найденных решений рассмотрено явление синхротронного излучения в рамках расширенной электродинамики с нарушением лоренцинвариантности в фермионном секторе в минимальной изотропной СРТнечетной форме; предсказан эффект асимметрии углового распределения мощности излучения, обусловленный предполагаемым нарушением лоренц-инвариантности.

В диссертации также впервые рассмотрено явление магнитного катализа образования статичных согласованных волн плотности кирального скалярного и псевдоскалярного конденсатов в плотной кварковой среде при низких температурах в рамках модели Намбу–Йона-Лазинио.

Научная и практическая значимость работы

Результаты диссертации могут быть использованы для поиска и теоретической интерпретации сигналов возможного нарушения лоренцинвариантности и СРТ-четности в природе, а также для получения ограничений на параметры, описывающие это нарушение. Кроме этого, результаты работы важны для изучения особенностей поведения и свойств основного состояния плотной кварковой материи при наличии сильного магнитного поля (в частности, в условиях столкновения тяжелых высокоэнергетических ионов, а также в ядрах компактных астрофизических объектов).

Апробация работы

Содержание различных разделов диссертационной работы представлялось в виде докладов на международной конференции студентов, аспирантов и молодых ученых «Ломоносов–2007» (МГУ, Москва, 2007); на 13-й международной Ломоносовской конференции по физике элементарных частиц (МГУ, Москва, 2007); на научной сессии-конференции секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий» (ИТЭФ, Москва, 2007); на международной конференции по избранным вопросам современной теоретической физики (SPMTP'08) (ОИЯИ, Дубна, 2008); на научной конференции «Ломоносовские чтения» (МГУ, Москва, 2010).

Публикации

По материалам диссертации опубликовано 9 научных работ, список которых приведен в конце автореферата.

Структура и объем диссертации

Диссертационная работа состоит из введения, трех глав основного текста, заключения, списка основных обозначений и списка цитируемой литературы. Полный объем диссертации составляет 119 страниц. Диссертация содержит 8 рисунков. Список литературы включает 168 ссылок.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В Главе 1 (Введении) дано обоснование актуальности темы диссертации (в разделе 1.1), затем приведен обзор теоретических направлений (со ссылками на основные публикации), в рамках которых возникают задачи, решаемые в последующих Главах.

Раздел 1.2 посвящен обзору РСМ и обоснованию актуальности задачи, решаемой в Главе 3. Описаны теоретические предпосылки для рассмотрения явления нарушения лоренц-инвариантности и СРТ-четности в природе. Выписан лагранжиан расширенной электродинамики, который выводится из РСМ в низкоэнергетическом пределе после нарушения $SU(2) \times U(1)$ симметрии. Для фермионного сектора соответствующая поправка к стандартному дираковскому лагранжиану имеет вид:

$$\mathcal{L}^{\rm LB} = \overline{\psi} \left(-\frac{1}{2} \sigma^{\mu\nu} H_{\mu\nu} + i\gamma^{\mu} c_{\mu\nu} D^{\nu} + i\gamma^5 \gamma^{\mu} d_{\mu\nu} D^{\nu} - \gamma^{\mu} a_{\mu} - \gamma^5 \gamma^{\mu} b_{\mu} \right) \psi, \quad (1)$$

где $H_{\mu\nu}, c_{\mu\nu}, d_{\mu\nu}, a_{\mu}, b_{\mu}$ – вещественные тензорные константы различной размерности, и мы используем здесь и далее стандартные обозначения: $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ — ковариантная производная в электромагнитном поле (где e > 0); $\gamma^5 = -i\gamma^0 \gamma^1 \gamma^2 \gamma^3$, $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$, при этом $\sigma^{ij} = \varepsilon_{ijk} \Sigma_k$. Последние два члена в (1) нарушают не только лоренц-инвариантность, но и СРТ-четность теории. Приведены примеры новых физических эффектов, предсказываемых в рамках РСМ и частично доступных уже сейчас для высокоточных наблюдений. Из имеющихся экспериментальных данных следуют достаточно жесткие ограничивающие оценки на тензорные параметры, присутствующие в лагранжиане РСМ. Оказывается, однако, что величина b^0 в (1) ограничена относительно слабо: $|b^0| < 10^{-2}$ эВ, в то время как, например, $|\mathbf{b}| < 10^{-18}$ эВ. Это создает мотивацию к рассмотрению взаимодействия вида $\overline{\psi}\gamma^5\gamma^\mu b_\mu\psi$, где $b^\mu=(b^0,\mathbf{0})$, как первого приближения для (1) при умеренных энергиях электрона. Приведено обоснование целесообразности исследования свойств синхротронного излучения для изучения проявления возможного нарушения лоренц-инвариантности в природе, в том числе для улучшения имеющихся в литературе оценок на величину параметра b^0 . Отмечено, что малые лоренц-неинвариантные поправки в лагранжиане модели оказывают влияние в первую очередь на спиновые свойства частиц, что требует использования последовательных методов квантовой теории поля для изучения соответствующих эффектов.

Раздел 1.3 посвящен обзору проблемы образования волн плотности кварковой материи и обоснованию актуальности задачи, решаемой в Главе 4. Кратко описана мотивация и история создания модели НЙЛ как низкоэнергетического приближения для КХД, приведены примеры физических явлений, которые можно объяснить в рамках модели НЙЛ на основе феномена спонтанного нарушения киральной симметрии. Выписан явный вид ДВКП-конфигурации:

$$\langle \overline{\psi}\psi\rangle = \Delta\cos\mathbf{qr},$$

$$\langle \overline{\psi}i\gamma^5\tau_3\psi\rangle = \Delta\sin\mathbf{qr},$$

$$(2)$$

где Δ — киральная амплитуда, **q** — волновой вектор, τ_a — изоспиновые матрицы (матрицы Паули). Вакуумные средние $\langle \overline{\psi}\psi \rangle$ и $\langle \overline{\psi}i\gamma^5\tau_3\psi \rangle$ интерпре-

тируются как σ и π^0 конденсаты. Приведено обоснование целесообразности исследования возможности магнитного катализа образования ДВКП. Указано на роль внешнего магнитного поля как катализатора спонтанного нарушения киральной симметрии, отмечена связь этого явления с эффективной одномеризацией движения фермионов в сильных полях; отмечено также, что формирование волн плотности физических величин в основном состоянии характерно для одномерных систем.

В разделе 1.4 сформулирована цель диссертационной работы и описана ее структура. В конце Главы 1 приведен список публикаций, в которых изложены основные результаты исследований.

Целью Главы 2 является получение системы точных решений модифицированного уравнения Дирака и энергетического спектра для электрона в постоянном однородном магнитном поле с учетом дополнительного фонового аксиально-векторного взаимодействия. В **разделе 2.1** выписан лагранжиан модели, учитывающий также аномальный магнитный момент (AMM) частицы (который считается постоянной величиной μ):

$$\mathcal{L} = \overline{\psi} \left(i \gamma^{\alpha} D_{\alpha} - m + \frac{\mu}{2} \sigma^{\alpha\beta} F_{\alpha\beta} - \gamma^{5} \gamma^{\alpha} b_{\alpha} \right) \psi, \qquad (3)$$

где m — масса электрона, $F_{\alpha\beta} = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}$. В модели имеется внешнее магнитное поле с напряженностью **H**, ориентированное по оси z: **H** = $H\mathbf{e}_z$, H > 0; электрическое поле отсутствует, так что $A^{\mu} = (0, \mathbf{A})$.

В разделе 2.2 рассматривается случай $b^{\mu} = (b^0, \mathbf{0}), \ \mu \neq 0$. Гамильтониан, следующий из (3), имеет вид (обозначим $b^0 \equiv b$):

$$H_{\rm D} = \boldsymbol{\alpha} \mathbf{P} + \gamma^0 m + \mu H \gamma^0 \Sigma_3 - b \gamma^5, \qquad (4)$$

где $\mathbf{P} = -i\nabla + e\mathbf{A}$, $\boldsymbol{\alpha} = \gamma^0 \boldsymbol{\gamma}$. В **разделе 2.2.1** показано, что наличие дополнительных слагаемых в (4) не разрушает общий вид волновых функций дираковской частицы в магнитном поле; в частности, в калибровке $\mathbf{A} = \frac{1}{2} \{-Hy, Hx, 0\}$ в цилиндрических координатах (r, φ, z) имеем:

$$\Psi(r,\varphi,z) = \frac{\sqrt{eH}}{2\pi} e^{ipz+i(n-s-1/2)\varphi} \begin{pmatrix} c_1 e^{-i\varphi/2} I_{n-1,s}(\rho) \\ ic_2 e^{i\varphi/2} I_{n,s}(\rho) \\ c_3 e^{-i\varphi/2} I_{n-1,s}(\rho) \\ ic_4 e^{i\varphi/2} I_{n,s}(\rho) \end{pmatrix}, \quad \rho \equiv \frac{eH}{2}r^2, \quad (5)$$

где $I_{n,s}(\rho)$ — функции Лагерра, $n = 0, 1, \ldots$ — главное квантовое число, $s = 0, 1, \ldots, n$ — радиальное квантовое число, $-\infty — продольный импульс; <math>\{c_{\mathfrak{a}}\}$ — спиновые коэффициенты. При этом задача на собственные значения для гамильтониана H_{D} может быть сформулирована в терминах задачи для матрицы K, действующей на столбец коэффициентов $\{c_{\mathfrak{a}}\}$; K получается из H_{D} заменой $\mathbf{P} \to \mathbf{k} = \{\sqrt{2eHn}, 0, p\}$. Далее уравнение $\det(K - E) = 0$ приводится к квадратному относительно E^2 , и энергетический спектр находится в явном виде (случай n = 0, для которого K является матрицей 2×2 , рассматривается отдельно).

Исходя из формы полученного спектра, в **разделе 2.2.2** делается вывод о возможности устранения члена $-b\gamma^5$ в (4) и сведения задачи к более простой. Для этого вводятся «угол смешивания» ϑ и эффективные величины $\tilde{\mu}$, \tilde{m} , \tilde{p} по формулам:

$$\vartheta = \operatorname{arctg} \frac{b}{\mu H}, \quad \tilde{\mu}H = \sqrt{(\mu H)^2 + b^2}, \quad \begin{pmatrix} \tilde{m} \\ \tilde{p} \end{pmatrix} = \begin{pmatrix} \cos\vartheta & \sin\vartheta \\ -\sin\vartheta & \cos\vartheta \end{pmatrix} \begin{pmatrix} m \\ p \end{pmatrix}.$$
(6)

Тогда на подпространстве состояний с фиксированным *p* с помощью унитарного преобразования получаем:

$$e^{\frac{\vartheta}{2}\gamma^{3}}H_{\rm D}\,e^{-\frac{\vartheta}{2}\gamma^{3}} \equiv \tilde{H}_{\rm D} = \boldsymbol{\alpha}\tilde{\mathbf{P}} + \gamma^{0}\tilde{m} + \tilde{\mu}H\gamma^{0}\Sigma_{3}, \quad \tilde{\mathbf{P}} = \{P_{1}, P_{2}, \tilde{p}\,\}.$$
(7)

Задача, таким образом, сводится к задаче для некоторого эффективного фермиона с наличием AMM в магнитном поле, решение которой известно [Тернов, Багров, Жуковский, 1966].

В разделе 2.2.3 приводятся окончательные результаты решения задачи. Энергетический спектр имеет вид:

$$E = \epsilon \sqrt{\left(\mathcal{P} + \tilde{\mu}H\right)^2 + \tilde{p}^2}, \qquad \epsilon = \pm 1, \tag{8}$$

где

$$\mathcal{P} = \zeta \sqrt{\tilde{m}^2 + 2eHn}, \qquad \zeta = \begin{cases} \pm 1, & n > 0, \\ -\operatorname{sgn} \tilde{m}, & n = 0; \end{cases}$$
(9)

причем \mathcal{P} представляет собой собственное значение оператора поляризационных свойств (спинового оператора) электрона

$$\Pi = \cos\vartheta \left(m\Sigma + i\gamma^0 \gamma^5 [\Sigma \times \mathbf{P}] \right)_3 + \sin\vartheta \left(\Sigma \mathbf{P} \right), \tag{10}$$

диагонализирующегося вместе с $H_{\rm D}$. Такой оператор отвечает смешанной («продольно-поперечной») поляризации частицы (при $\vartheta = 0$ поляризация является чисто «поперечной»). Отметим, что при n = 0 состояние поляризации (ориентация спина) ζ не может быть задано произвольно и не служит для классификации состояний. Нормированные коэффициенты $\{c_{\mathfrak{a}}\}$ в (5) имеют вид:

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} A_+(P_+\alpha_+ + \epsilon\zeta P_-\alpha_-) \\ -\zeta A_-(P_+\alpha_+ - \epsilon\zeta P_-\alpha_-) \\ A_+(P_+\alpha_- - \epsilon\zeta P_-\alpha_+) \\ \zeta A_-(P_+\alpha_- + \epsilon\zeta P_-\alpha_+) \end{pmatrix},$$
(11)

где

$$\alpha_{\pm} = \cos\frac{\vartheta}{2} \mp \sin\frac{\vartheta}{2}, \quad A_{\pm} = \sqrt{1 \pm \frac{\tilde{m}}{\mathcal{P}}}, \quad P_{\pm} = \sqrt{1 \pm \frac{\tilde{p}}{E}}.$$
(12)

В разделе 2.3 рассматривается случай $b^{\mu} = (0, \mathbf{b}), \mu = 0$, векторы **b** и **H** параллельны, $\mathbf{b} \equiv \{0, 0, b\}$. Гамильтониан, следующий из (3), имеет вид:

$$H_{\rm D} = \boldsymbol{\alpha} \mathbf{P} + \gamma^0 m - \Sigma_3 b. \tag{13}$$

Ход решения задачи в целом аналогичен рассмотренному в предыдущем разделе. В **разделе 2.3.1** показано, что в калибровке $\mathbf{A} = \{0, Hx, 0\}$ волновые функции имеют следующий общий вид:

$$\Psi(x,y,z) = \frac{(eH)^{\frac{1}{4}}}{2\pi} e^{ipz+iqy} \begin{pmatrix} c_1 u_{n-1}(\xi) \\ ic_2 u_n(\xi) \\ c_3 u_{n-1}(\xi) \\ ic_4 u_n(\xi) \end{pmatrix}, \quad \xi \equiv \sqrt{eH}x + \frac{q}{\sqrt{eH}}, \quad (14)$$

где $u_n(\xi) - \phi$ ункции Эрмита, $n = 0, 1, \ldots$ — главное квантовое число, $-\infty — продольный импульс; <math>\{c_{\mathfrak{a}}\}$ — спиновые коэффициенты. Квантовое число $-\infty < q < +\infty$ связано с координатой x_0 «центра» волновой функции по оси x: $x_0 = -\frac{q}{eH}$. Матрица K, действующая на столбец коэффициентов $\{c_{\mathfrak{a}}\}$, по-прежнему получается заменой $\mathbf{P} \to \mathbf{k} = \{\sqrt{2eHn}, 0, p\}$ в (13).

Оказывается, что в данном случае также можно построить унитарное преобразование, устраняющее член $-\Sigma_3 b$ в гамильтониане, однако такое преобразование является дискретным и применимо только к матрице K:

$$U^{-1}KU \equiv \tilde{K} = \boldsymbol{\alpha}\tilde{\mathbf{k}} + \gamma^0 m + \tilde{\mu}H\gamma^0\Sigma_3, \quad \tilde{\mathbf{k}} = \{p, 0, -\sqrt{2eHn}\},$$
(15)

где $U = \frac{1}{2}(1 + i\Sigma_2)(1 + i\gamma^0\Sigma_2)$, при этом $\tilde{\mu}H = b$. Этого, в то же время, достаточно для сведения задачи к рассмотренной в предыдущем разделе.

В разделе 2.3.2 приводятся окончательные результаты решения задачи. Энергетический спектр имеет вид:

$$E = \begin{cases} \epsilon \sqrt{\left(\mathcal{P} + b\right)^2 + 2eHn}, & n > 0, \\ \mathcal{P} + b, & n = 0, \end{cases} \quad \epsilon = \pm 1, \tag{16}$$

где

$$\mathcal{P} = \zeta \sqrt{m^2 + p^2}, \qquad \zeta = \begin{cases} \pm 1, & n > 0, \\ \epsilon, & n = 0, \end{cases}$$
(17)

и ${\mathcal P}$ представляет собой собственное значение спинового оператора

$$\Pi = \gamma^5 \left(\mathbf{P} - \boldsymbol{\gamma} m \right)_3. \tag{18}$$

При получении спектра случай n = 0 рассмотрен как особый (так как преобразование U определено только для матриц 4×4). В этом случае симметрия между частицами и античастицами оказывается утраченной, и квантовое число ϵ теряет смысл знака энергии; это объясняется СРТ-нечетной природой добавочного фонового взаимодействия, которая проявляет себя во внешнем поле. Нормированные коэффициенты { c_a } в (14) имеют вид:

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} -\zeta A_-(P_+ - \epsilon \zeta P_-) \\ -A_+(P_+ + \epsilon \zeta P_-) \\ A_+(P_+ - \epsilon \zeta P_-) \\ -\zeta A_-(P_+ + \epsilon \zeta P_-) \end{pmatrix},$$
(19)

где

$$A_{\pm} = \sqrt{1 \pm \frac{m}{\mathcal{P}}}, \qquad P_{\pm} = \sqrt{1 \pm \frac{\sqrt{2eHn}}{E}}.$$
 (20)

В разделе 2.3.3 рассматриваются малые отклонения **b** от направления **H**. Соответствующая поправка к энергии находится по теории возмущений, при этом проводится подробный анализ корректности полученного выражения с учетом возможности пересечения невозмущенных уровней со смежными значениями *n* и противоположными знаками ζ , в этих случаях применяется модифицированная теория возмущений для близколежащих уровней. При **b** = { b_{\perp} , 0, *b*} окончательное асимптотическое выражение для энергетической поправки имеет вид:

$$\Delta E_{\perp} = \left(f_{+}|_{n'=n+1} + f_{-}|_{n'=n-1} \right) \Big|_{\epsilon'=\epsilon} + \left(g_{+}|_{n'=n+1} + g_{-}|_{n'=n-1} \right) \Big|_{\epsilon'=-\epsilon}, \quad (21)$$

где всюду следует положить также $p'=p,\,\zeta'=-\zeta,$ и где

$$f_{\pm} = \frac{E' - E}{2} + \operatorname{sgn}_{\pm}(E - E') \sqrt{\left(\frac{E - E'}{2}\right)^2 + R_{\pm}R'_{\mp}}, \quad g_{\pm} = \frac{R_{\pm}R'_{\mp}}{E - E'}.$$
 (22)

В приведенных выражениях штрих кратко обозначает зависимость какойлибо величины от набора квантовых чисел $\{n', p', \zeta', \epsilon'\}$ вместо $\{n, p, \zeta, \epsilon\}$, при этом принято соглашение $\operatorname{sgn}_{\pm}(0) = \pm 1$ и введено обозначение

$$R_{\pm} = \sqrt{2} \, b_{\perp} \left(1 \pm \zeta \epsilon \sqrt{1 - \frac{2eHn}{E^2}} \right). \tag{23}$$

В разделе 2.4 рассмотрено обобщение результатов Главы 2 на случай положительного заряда фермиона. В разделе 2.5 подведены краткие промежуточные итоги.

Целью Главы 3 является изучение синхротронного излучения в рамках расширенной электродинамики с нарушением лоренц-инвариантности в фермионном секторе в минимальной изотропной СРТ-нечетной форме. В **разделе 3.1** осуществляется постановка задачи и обсуждается используемая модель. Отмечается, что безразмерные коэффициенты, присутствующие в кинетических членах в (1), не играют ведущей роли при рассмотрении низкоэнергетических процессов (относительно планковского масштаба). Кроме этого, указывается на необходимость учета AMM частицы, для которого берется швингеровское значение: $\mu = \mu_B \frac{\alpha}{2\pi}$. В качестве лагранжиана теории используется (3), при этом $b^{\mu} = (b, \mathbf{0})$.

В разделе 3.2 кратко приводятся основные положения квантовой теории синхротронного излучения. За основу берется формула (справедливая в первом порядке по постоянной тонкой структуры α) для мощности W электромагнитного излучения при переходе электрона из состояния Ψ с энергией E в нижележащее состояние Ψ' с энергией E':

$$W = \frac{\alpha}{2\pi} \int d^3k \,\,\delta(E - E' - k) \left| \mathbf{f}^* \int d^3x \,\Psi'^+ \boldsymbol{\alpha} e^{-i\mathbf{k}\mathbf{x}} \,\Psi \right|^2, \qquad (24)$$

где **k** — волновой вектор фотона, **f** — вектор, характеризующий его поляризационные свойства. Для вычисления (24) далее используются решения, найденные в Главе 2 (разделе 2.2). Матричный элемент перехода выражается через спиновые коэффициенты и функции Лагерра:

$$\int d^3x \, \Psi'^+ \boldsymbol{\alpha} e^{-i\mathbf{k}\mathbf{x}} \, \Psi = I_{s,s'}(x) \, \delta(p' - p + k \cos\theta) \times \\ \times \begin{pmatrix} i(c_1'^*c_4 + c_3'^*c_2)I_{n,n'-1}(x) - i(c_1c_4'^* + c_3c_2'^*)I_{n-1,n'}(x) \\ (c_1'^*c_4 + c_3'^*c_2)I_{n,n'-1}(x) + (c_1c_4'^* + c_3c_2'^*)I_{n-1,n'}(x) \\ (c_1'^*c_3 + c_3'^*c_1)I_{n-1,n'-1}(x) - (c_2c_4'^* + c_4c_2'^*)I_{n,n'}(x) \end{pmatrix}, \quad (25)$$

где $x = \frac{1}{2eH} k^2 \sin^2 \theta$, и мы положили $\mathbf{k} = \{k \sin \theta \cos \varphi, k \sin \theta \sin \varphi, k \cos \theta\}$. Осуществляется суммирование по квантовым числам конечного состояния n', s', p', выполняется интегрирование по k.

В начале **раздела 3.3** анализируется применяемое в дальнейшем приближение. Мы рассматриваем случай ультрарелятивистской частицы $(m/E \equiv \lambda \ll 1)$ в слабом поле $(H \ll H_c \equiv m^2/\sqrt{\alpha} \simeq 4.41 \cdot 10^{13} \, \Gamma c)$ при начальном продольном импульсе p = 0, что соответствует квазиклассическим состояниям с $n \gg 1$. Мы также пренебрегаем величиной $\tilde{\mu}$ (эффективным AMM). При расчете эффектов электромагнитного излучения в нашей задаче играют существенную роль три малых параметра: λ , ϑ , $\tilde{\mu}H/E$. В силу соотношения $\tilde{\mu}H \ll m$ (выполняющегося в слабом поле), а также определения (6) и физического смысла исходных величин μ , b разумным является предположение, что при больших энергиях имеет место оценка $\tilde{\mu}H/E \ll \vartheta$ (и $\tilde{\mu}H/E \ll \lambda$), что обосновывает наш выбор. Далее отмечается, что при $\tilde{\mu} \to 0$ мы, фактически, рассматриваем излучение «минимального» электрона с гамильтонианом $H_{\rm D} = \alpha \mathbf{P} + \gamma^0 m$ и энергетическим спектром $E = \sqrt{m^2 + 2eHn + p^2}$, но с фиксированной «продольно-поперечной» поляризацией, см. (10). Это позволяет применить к нашему случаю методы расчета синхротронного излучения, развитые в работах А. А. Соколова и И. М. Тернова. Суммирование по главным квантовым числам конечных состояний n' заменяется интегрированием, причем n' можно связать с энергией k генерируемого фотона. Для функций $I_{n,n'}(x)$ в (25) используются асимптотические выражения через функции Макдональда $K_{1/3}(z)$ и $K_{2/3}(z)$, где $z = \frac{y}{2}(\hat{\lambda}/\lambda)^3$, $\hat{\lambda}^2 = \cos^2 \theta + \lambda^2 \sin^2 \theta$, $y = \frac{1}{\xi} \frac{k}{E-k}$ — безразмерная энергетическая переменная, $\xi = \frac{3}{2} \frac{H}{H_c} \frac{1}{\lambda}$ — «квантовый параметр» синхротронного излучения (не обязательно малый).

В разделе 3.4 приведено итоговое асимптотическое выражение для спектрально-углового распределения мощности излучения (нормированного на единицу длины по оси z) в ведущем порядке по λ (с учетом того, что тот же порядок малости имеют также величины $\hat{\lambda}$ и соз θ в области изменения θ , где $K_{\nu}(z)$ существенно отличны от нуля):

$$W_{i} = W_{c} \int_{0}^{+\infty} dy \int_{4\pi} d\Omega \, \frac{27}{128\pi^{3}} \, \frac{y^{2}}{\lambda^{5}(1+\xi y)^{4}} \left(\Phi_{i}^{+} + \Phi_{i}^{-}\right), \quad i = \sigma, \pi, \qquad (26)$$

где $W_c = \frac{8}{27} \alpha \xi^2 m^2$ — полная мощность синхротронного излучения в классическом пределе; при этом в выражении для W_i разделены вклады от переходов без (Φ_i^+) и с (Φ_i^-) изменением спинового квантового числа ζ . Для σ - и π -компонент линейно поляризованного излучения (для которых в плоскости орбиты электрона лежат векторы **E** и **H** соответственно) имеем:

$$\Phi_{\sigma}^{+} = \hat{\lambda}^{2} \Big((2 + \xi y) \hat{\lambda} K_{2/3}(z) - \zeta(\xi y) (\lambda \cos \vartheta - \cos \theta \sin \vartheta) K_{1/3}(z) \Big)^{2},$$

$$\Phi_{\sigma}^{-} = \hat{\lambda}^{2} \Big((\xi y) (\cos \theta \cos \vartheta + \lambda \sin \vartheta) K_{1/3}(z) \Big)^{2},$$

$$\Phi_{\pi}^{+} = \hat{\lambda}^{2} \Big((2 + \xi y) \cos \theta K_{1/3}(z) + \zeta(\xi y) \sin \vartheta \hat{\lambda} K_{2/3}(z) \Big)^{2},$$

$$\Phi_{\pi}^{-} = \hat{\lambda}^{2} \Big((\xi y) (\cos \vartheta \hat{\lambda} K_{2/3}(z) + \zeta \lambda K_{1/3}(z)) \Big)^{2},$$

(27)

где ϑ — «угол смешивания», см. (6). Характерный вид зависимости $\Phi(\theta)$ приведен на Рис. 1. Основным эффектом, заметным при $\vartheta \neq 0$, является асимметрия углового распределения мощности излучения относительно плоскости орбиты электрона. Такая асимметрия свойственна излучению «продольно» поляризованной частицы и полностью отсутствует в случае «поперечной» поляризации (которая сохраняется в магнитном поле из-за

Рис. 1. Примеры зависимости $\Phi(\theta)$, построенной в полярных координатах (для $\zeta = -1$, k = 1 МэВ, $H = 10^4$ Гс, E = 1 ГэВ, $\vartheta = 10^{-3}$). Приведено значение коэффициента асимметрии $a = \int_0^{\pi/2} \sin \theta \, d\theta \, \Phi(\theta) - \int_{\pi/2}^{\pi} \sin \theta \, d\theta \, \Phi(\theta)$. Функции $\Phi(\theta)$ нормированы условием $\int_0^{\pi} \sin \theta \, d\theta \, \Phi(\theta) = 1$.

влияния AMM). На основе факта наблюдения преимущественно «поперечной» поляризации (в лабораторных условиях), в заключительном **разде-**ле 3.5 дана оценка для параметра, контролирующего нарушение лоренцинвариантности в нашей модели:

$$|b| \ll \mu H \sim 10^{-6} \,\mathrm{sB},\tag{28}$$

которая является лучшей, чем большинство оценок, имеющихся на данный момент в литературе. Отмечено также, что эффект угловой асимметрии излучения является доминирующим с ростом энергии и представляет собой первоочередной экспериментальный интерес.

Целью Главы 4 является изучение фазовых переходов в плотной холодной кварковой среде под влиянием химпотенциала и внешнего магнитного поля в рамках модели НЙЛ в предположении, что в системе может формироваться ДВКП. В разделе 4.1 осуществляется постановка задачи и обсуждается используемое приближение. За основу берется лагранжиан модели НЙЛ (с учетом конечной плотности среды) для $N_c = 3$ цветов и $N_f = 2$ ароматов кварков (u- и d-), которые считаются безмассовыми:

$$\mathcal{L}^{\text{NJL}} = \overline{\psi} \left(i \gamma^{\alpha} D_{\alpha} + \mu \gamma^{0} \right) \psi + G \left((\overline{\psi} \psi)^{2} + (\overline{\psi} i \gamma^{5} \boldsymbol{\tau} \psi)^{2} \right),$$
(29)

где G — константа связи, μ — химпотенциал; при этом $D_{\mu} = \partial_{\mu} + iQA_{\mu}$, где $Q = \text{diag}(\frac{2}{3}e, -\frac{1}{3}e)$ — матрица электрического заряда, действующая в изоспиновом пространстве; e > 0. На основе анзаца (2) получается лагранжиан в приближении среднего поля:

$$\mathcal{L}^{\rm MF} = \overline{\psi} \left(i\gamma^{\alpha} D_{\alpha} + \mu\gamma^{0} - m \left(\cos \mathbf{qr} + i\gamma^{5} \tau_{3} \sin \mathbf{qr} \right) \right) \psi - \frac{m^{2}}{4G}, \qquad (30)$$

где $m \equiv -2G\Delta$. Преобразование $\psi \to e^{i\gamma^5\tau_3 q^{\mu}x_{\mu}/2} \psi$, $\overline{\psi} \to \overline{\psi} e^{i\gamma^5\tau_3 q^{\mu}x_{\mu}/2}$, где $q^{\mu} \equiv (0, \mathbf{q}), x^{\mu} \equiv (t, \mathbf{r})$, приводит (30) к виду:

$$\mathcal{L} = \overline{\psi} \left(i\gamma^{\alpha} D_{\alpha} + \mu\gamma^{0} - m + \gamma^{5} \tau_{3} \gamma^{\alpha} b_{\alpha} \right) \psi - \frac{m^{2}}{4G}, \qquad (31)$$

0

где $b^{\mu} \equiv q^{\mu}/2 = (0, \mathbf{b}), \mathbf{b} \equiv \mathbf{q}/2$. На основе метода Фуджикавы показано, что такое преобразование не приводит к модификации меры континуального интеграла $\mathcal{D}\overline{\psi}\mathcal{D}\psi$, если в системе отсутствует электрическое поле.

В разделе 4.2 осуществляется построение термодинамического потенциала системы, для этого используются свойства решений, найденных в Главе 2 (разделе 2.3); мы считаем, что векторы **b** и **H** параллельны. В начале раздела 4.2.1 показано, что однопетлевое эффективное действие

$$\Gamma = \int d^4x \left(-\frac{m^2}{4G} \right) + \frac{1}{i} \ln \operatorname{Det} \left(i\gamma^{\alpha} D_{\alpha} + \mu\gamma^0 - m + \gamma^5 \tau_3 \gamma^{\alpha} b_{\alpha} \right)$$
(32)

может быть выражено через сумму таких действий, построенных для фермиона с лагранжианом (3) без AMM, с учетом ненулевого химпотенциала и с заменой абсолютной величины электрического заряда (на значения зарядов кварков). Соответствующие объекты приводятся к виду $\frac{1}{2i}$ Tr ln $(-(i\partial^0)^2 + (H_D - \mu)^2)$, и функциональный след берется с использованием базисных функций $u(x) = \frac{1}{\sqrt{2\pi}} e^{-ip^0 t} \Psi(\mathbf{r})$, где H_D , $\Psi(\mathbf{r})$ определены в (13), (14); при этом выбранная в разделе 2.3 калибровка **А** максимально упрощает расчет. Далее, для перехода к термодинамическому потенциалу Ω (фактически, его объемной плотности) при конечной температуре T используется техника Мацубары. Окончательный результат имеет вид:

$$\Omega = \frac{m^2}{4G} + N_c \,\Omega' \big|_{e \to \frac{2}{3}e} + N_c \,\Omega' \big|_{e \to \frac{1}{3}e}, \quad \Omega' = \Omega'_{\rm v} + \Omega'_{\mu} + \Omega'_T, \tag{33}$$

где мы разделили вакуумный вклад и вклады от $\mu > 0$ и T > 0:

$$\begin{pmatrix} \Omega'_{\rm v} \\ \Omega'_{\mu} \\ \Omega'_{T} \end{pmatrix} = -\frac{1}{2} \frac{eH}{(2\pi)^2} \int dp \sum_{n\zeta\epsilon} \begin{pmatrix} |E| \\ |E-\mu| - |E| \\ 2T\ln\left(1 + e^{-|E-\mu|/T}\right) \end{pmatrix}, \quad (34)$$

и энергетический спектр $\{E\}$ дается формулой (16).

В разделе 4.2.2 рассматривается регуляризация Ω . Для вакуумного вклада Ω'_{v} используется регуляризация методом собственного времени:

$$(\Omega_{v}')^{\text{reg}} = \frac{1}{4\sqrt{\pi}} \frac{eH}{(2\pi)^2} \int dp \sum_{n\zeta\epsilon} \int_{1/\Lambda^2}^{+\infty} \frac{ds}{s\sqrt{s}} e^{-sE^2}, \qquad (35)$$

где Λ — размерный параметр обрезания. Исследуется вопрос о корректности выражения для Ω'_{μ} . Несмотря на то, что последнее является сходящимся, если сумма по ϵ берется первой, оно (как разность двух изначально расходящихся объектов) также подразумевает использование регуляризации, например, с помощью обрезающего фактора $\theta(\Lambda' - |E|)$ (параметр Λ'

Рис. 2. Примеры зависимости параметров порядка от внешних условий при G = 6, T = 0. Все величины безразмерны. При H = 0 указано положение фаз модели (граница между фазами *B* и *C* обозначена пунктиром).

не обязательно в точности равен Λ). Показано, что это не требуется, если в модели имеется симметрия между частицами и античастицами, однако последняя нарушена для n = 0 при $b \neq 0$, см. (16); вычисления для этого случая проводятся в явном виде. Корректное снятие регуляризации приводит к модификации выражения для Ω'_{μ} :

$$\Omega'_{\mu} \to -\frac{1}{2} \frac{eH}{(2\pi)^2} \Biggl(\int dp \sum_{n\zeta\epsilon} \left(|E-\mu| - |E| \right) + 4\mu b \Biggr). \tag{36}$$

Пренебрежение членом $4\mu b$ в последнем выражении не обеспечивает независимости потенциала Ω от параметра b при m = 0, что является признаком некорректного решения задачи. Следует отметить, что регуляризация с помощью фактора $\theta(\Lambda' - |E|)$ не является в общем случае калибровочноинвариантной; однако вопрос о симметрии модели при $b \neq 0$ является на данный момент дискуссионным, в частности, в литературе обсуждается возможность индуцирования массы фотона в теориях с наличием фонового аксиально-векторного взаимодействия фермионов [Alfaro et al., 2010].

В разделе 4.3 дается подробное описание поведения параметров порядка и фаз, возникающих в системе, полученное на основе результатов численного исследования регуляризованного термодинамического потенциала Ω на минимум относительно m и b для различных значений μ и \sqrt{eH} при $T \rightarrow 0$. При расчетах использовались величины, обезразмеренные с помощью параметра обрезания Λ . Помимо спектра (16) были задействованы поправки (21) для исследования поведения Ω при малых отклонениях вектора **b** от направления **H**. Во всех интересующих нас случаях найденные минимумы оказались стабильны. Разумно предположить, что глобальные минимумы Ω достигаются именно при $b_{\perp} = 0$, так что вращательная симметрия в системе сохраняется.

Рис. 3. Фазовые диаграммы кварковой материи при T = 0. Все величины безразмерны. Пунктирная линия обозначает кроссоверную область. Линии на диаграммах отвечают переходам 1-го рода (за исключением точки, соответствующей переходу 2-го рода B - C при H = 0 в случае G = 6).

Примеры зависимости параметров порядка от внешних условий приведены на Рис. 2. Фазовые диаграммы системы приведены на Рис. 3. В рамках «стандартной» модели НЙЛ при $G > G_c$ (в нашем случае критическая константа связи $G_c \simeq 3.27$) кварковая материя может находиться в трех различных фазах: безмассовой симметричной фазе А и двух массивных фазах В и С с нарушенной киральной симметрией, причем С является фазой, демонстрирующей ненулевую плотность числа частиц ρ , в то время как $\rho = 0$ в фазе *B*. В нашей модели имеется также ДВКП-фаза *D*, исследованная Е. Nakano и Т. Tatsumi; эта фаза становится шире (занимает больший интервал значений μ) с ростом *H*. Более того, при $H > 0, \mu > 0$ ДВКП образуется во всех массивных фазах. Показано, что в достаточно сильном поле разница в физических свойствах между фазами С и D становится несущественной, и между ними возникает кроссоверная область. Рассмотрен также случай $G < G_c$; установлено, что фазовая диаграмма сохраняет свой характерный вид (магнитное поле катализирует нарушение киральной симметрии), в то же время, в массивной фазе В образуется ДВКП, как и в случае $G > G_c$.

В заключительном **разделе 4.4** подведены итоги и обозначены направления для будущего исследования; отмечено, что эффект магнитного катализа образования ДВКП связан со специфической модификацией энергетического спектра фермионов в магнитном поле при n = 0: если при вычислении Ω отбросить вклад состояний с n = 0, то указанный эффект в фазах B, C будет утерян, а фаза D станет значительно менее стабильной.

16

В Главе 5 (Заключении) подведены итоги диссертационной работы и сформулированы основные положения, выносимые на защиту:

- 2. Показано, что задачи на собственные значения для моделей такого типа могут быть на определенном этапе формально сведены к задаче о движении дираковского фермиона с модифицированным аномальным магнитным моментом и другими характеристиками, но без наличия фонового аксиально-векторного взаимодействия.
- 3. Проведен расчет характеристик синхротронного излучения электрона в рамках расширенной электродинамики с нарушением лоренцинвариантности в фермионном секторе в минимальной изотропной СРТ-нечетной форме. Показано, что основную роль при рассмотрении синхротронного излучения играет специфическое взаимное влияние эффектов наличия у электрона АММ и фонового аксиальновекторного взаимодействия.
- 4. Предсказан эффект смешивания «поперечной» и «продольной» поляризации электрона в магнитном поле, а также связанное с этим эффектом явление асимметрии углового распределения мощности излучения, обусловленное предполагаемым нарушением лоренцинвариантности. Дана оценка для параметра, контролирующего это нарушение в изучаемой модели.
- 5. Рассмотрена возможность образования дуальной волны киральной плотности в плотной холодной кварковой среде при наличии внешнего магнитного поля в рамках модели Намбу–Йона-Лазинио, которая в киральном пределе и приближении среднего поля для выбранной конфигурации конденсатов сводится к модели с наличием фонового аксиально-векторного взаимодействия фермионов. Построен термодинамический потенциал системы, исследована зависимость параметров порядка от внешних условий, получены фазовые диаграммы.
- 6. Показано, что магнитное поле катализирует образование волн плотности конденсатов при всех значениях химпотенциала, больших нуля. Такое поведение системы связано с потерей симметрии между частицами и античастицами на фоне ДВКП на нижнем уровне Ландау.

Основные результаты диссертации опубликованы в работах:

- 1. Frolov I. E., Zhukovsky V. Ch. Synchrotron radiation in the standard model extension. J. Phys. A. 2007. Vol. 40, no. 34. Pp. 10625–10640.
- 2. Жуковский В. Ч., Фролов И. Е. Синхротронное излучение в условиях нарушенной лоренц-инвариантности. — Вестник Моск. ун-та. Физ., Астрон. — 2008. — Т. 63, № 1. — С. 11–15.
- 3. Жуковский В. Ч., Фролов И. Е., Харланов О. Г. Электромагнитное излучение квантовых систем в условиях нарушенной лоренц- и СРТ-инвариантности. Ядерная физика. 2009. Т. 72, № 2. С. 348–353.
- Frolov I. E., Zhukovsky V. Ch., Klimenko K. G. Chiral density waves in quark matter within the Nambu—Jona-Lasinio model in an external magnetic field. — *Phys. Rev. D.* — 2010. — Vol. 82, no. 7. — P. 076002.
- 5. Жуковский В. Ч., Клименко К. Г., Фролов И. Е. Волны плотности кварковой материи в модели Намбу–Йона-Лазинио в магнитном поле. Вестник Моск. ун-та. Физ., Астрон. 2010. Т. 65, № 6. С. 106–109.
- Фролов И. Е. Влияние нарушения лоренц-инвариантности на синхротронное излучение // Конференция «Ломоносов–2007», секция «Физика». Сборник тезисов. — Москва: физ. ф-т МГУ, 2007. — С. 221–222.
- 7. Frolov I. E., Kharlanov O. G., Zhukovsky V. Ch. Bound state problems and radiative effects in extended electrodynamics with Lorentz violation // Proceedings of the Thirteenth Lomonosov Conference on Elementary Particle Physics, Moscow, 23–29 August 2007 / Ed. by A. Studenikin. – Singapore: World Scientific, 2009. – Pp. 416–419.
- Zhukovsky V. Ch., Bubnov A., Frolov I., Kharlanov O. Quantum effects in QED under the condition of Lorentz and CPT invariance violation // XIII International Conference on Selected Problems of Modern Physics. Proceedings of the Conference, Dubna, June 23–28, 2008 / Ed. by B. M. Barbashov and S. M. Eliseev. — Dubna: JINR, 2009.
- Жуковский В. Ч., Клименко К. Г., Фролов И. Е. Волны плотности кирального и пионного конденсатов в модели Намбу–Йона-Лазинио в магнитном поле // Научная конференция «Ломоносовские чтения», секция физики, 16–25 апреля 2010 года. Сборник тезисов докладов. — Москва: физ. ф-т МГУ, 2010. — С. 114–117.